mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-26 06:48:04 +02:00
Einige Inhalte hinzugefügt
This commit is contained in:
parent
a8ab55d4b3
commit
e63c4f3335
16 changed files with 539 additions and 33 deletions
|
@ -1,14 +1,173 @@
|
|||
\subsection{Weitere Aufgaben}
|
||||
\subsection{Aufgabe 3}
|
||||
\begin{frame}{Aufgabe 3}
|
||||
Zeigen Sie: Ein Kreis ist genau dann bipartit, wenn er gerade Länge hat.
|
||||
\end{frame}
|
||||
|
||||
% TODO
|
||||
\pgfdeclarelayer{background}
|
||||
\pgfsetlayers{background,main}
|
||||
\begin{frame}{Aufgabe 3 - Lösung}
|
||||
Idee: Knoten abwechselnd färben
|
||||
|
||||
\tikzstyle{selected edge} = [draw,line width=5pt,-,black!50]
|
||||
\begin{center}
|
||||
\adjustbox{max size={\textwidth}{0.8\textheight}}{
|
||||
\begin{tikzpicture}
|
||||
\node[vertex] (a) at (0,0) {};
|
||||
\node[vertex] (b) at (2,0) {};
|
||||
\node[vertex] (c) at (2,2) {};
|
||||
\node[vertex] (d) at (0,2) {};
|
||||
\node[vertex] (e) at (1,4) {};
|
||||
|
||||
\draw (a) -- (b) -- (c) -- (e) -- (d) -- (a);
|
||||
|
||||
\node<2->[vertex, red] (a) at (0,0) {};
|
||||
\node<3->[vertex, blue] (b) at (2,0) {};
|
||||
\node<4->[vertex, red] (c) at (2,2) {};
|
||||
\node<5->[vertex, blue] (e) at (1,4) {};
|
||||
\node<6->[vertex, red] (d) at (0,2) {};
|
||||
|
||||
\begin{pgfonlayer}{background}
|
||||
\path<3->[selected edge] (a.center) edge node {} (b.center);
|
||||
\path<4->[selected edge] (b.center) edge node {} (c.center);
|
||||
\path<5->[selected edge] (c.center) edge node {} (e.center);
|
||||
\path<6->[selected edge] (e.center) edge node {} (d.center);
|
||||
\path<7->[selected edge,lime] (d.center) edge node {} (a.center);
|
||||
\end{pgfonlayer}
|
||||
\end{tikzpicture}
|
||||
}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\subsection{Aufgabe 4}
|
||||
\begin{frame}{Aufgabe 4}
|
||||
Zeigen Sie: Ein Graph $G$ ist genau dann bipartit, wenn er nur Kreise
|
||||
gerade Länge hat.
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Aufgabe 4: Lösung, Teil 1}
|
||||
\underline{Vor.:} Sei $G = (E, K)$ ein zus. Graph. \pause
|
||||
|
||||
\underline{Beh.:} $G$ ist bipartit $\Rightarrow G$ hat keine Kreis ungerader Länge \pause
|
||||
|
||||
\underline{Bew.:} durch Widerspruch \pause
|
||||
|
||||
\underline{Annahme:} $G$ hat Kreis ungerader Länge \pause
|
||||
|
||||
$\xRightarrow[]{A.4}$ Ein Subgraph von $G$ ist nicht bipartit \pause
|
||||
|
||||
$\Rightarrow$ Widerspruch zu \enquote{$G$ ist bipartit} \pause
|
||||
|
||||
$\Rightarrow$ $G$ hat keinen Kreis ungerader Länge $\blacksquare$
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Aufgabe 4: Lösung, Teil 2}
|
||||
\underline{Vor.:} Sei $G = (E, K)$ ein zus. Graph. \pause
|
||||
|
||||
\underline{Beh.:} $G$ hat keinen Kreis ungerader Länge $\Rightarrow G$ ist bipartit \pause
|
||||
|
||||
\underline{Bew.:} Konstruktiv \pause
|
||||
|
||||
Färbe Graphen mit Breitensuche $\blacksquare$
|
||||
\end{frame}
|
||||
|
||||
\pgfdeclarelayer{background}
|
||||
\pgfsetlayers{background,main}
|
||||
\begin{frame}{Aufgabe 4 - Beispiel}
|
||||
\tikzstyle{selected edge} = [draw,line width=5pt,-,black!50]
|
||||
\begin{center}
|
||||
\adjustbox{max size={\textwidth}{0.8\textheight}}{
|
||||
\begin{tikzpicture}
|
||||
\node[vertex] (a) at (1,1) {};
|
||||
\node[vertex] (b) at (2,0) {};
|
||||
\node[vertex] (c) at (4,0) {};
|
||||
\node[vertex] (d) at (1,2) {};
|
||||
\node[vertex] (e) at (2,2) {};
|
||||
\node[vertex] (f) at (3,2) {};
|
||||
\node[vertex] (g) at (2,4) {};
|
||||
\node[vertex] (h) at (3,3) {};
|
||||
\node[vertex] (i) at (4,2) {};
|
||||
\node[vertex] (j) at (1,3) {};
|
||||
|
||||
\draw (a) -- (b);
|
||||
\draw (a) -- (d);
|
||||
\draw (b) -- (e);
|
||||
\draw (b) -- (c);
|
||||
\draw (c) -- (f);
|
||||
\draw (d) -- (e);
|
||||
\draw (d) -- (j);
|
||||
\draw (e) -- (f);
|
||||
\draw (f) -- (i);
|
||||
\draw (g) -- (j);
|
||||
\draw (g) -- (h);
|
||||
|
||||
\node<2->[vertex, red] (a) at (1,1) {};
|
||||
\node<3->[vertex, blue] (b) at (2,0) {};
|
||||
\node<3->[vertex, blue] (d) at (1,2) {};
|
||||
\node<4->[vertex, red] (c) at (4,0) {};
|
||||
\node<4->[vertex, red] (e) at (2,2) {};
|
||||
\node<4->[vertex, red] (j) at (1,3) {};
|
||||
\node<5->[vertex, blue] (f) at (3,2) {};
|
||||
\node<5->[vertex, blue] (g) at (2,4) {};
|
||||
\node<6->[vertex, red] (h) at (3,3) {};
|
||||
\node<6->[vertex, red] (i) at (4,2) {};
|
||||
|
||||
\begin{pgfonlayer}{background}
|
||||
\path<3->[selected edge] (a.center) edge node {} (b.center);
|
||||
\path<3->[selected edge] (a.center) edge node {} (d.center);
|
||||
\path<4->[selected edge] (b.center) edge node {} (c.center);
|
||||
\path<4->[selected edge] (b.center) edge node {} (e.center);
|
||||
\path<4->[selected edge] (d.center) edge node {} (j.center);
|
||||
\path<4->[selected edge] (d.center) edge node {} (e.center);
|
||||
\path<5->[selected edge] (j.center) edge node {} (g.center);
|
||||
\path<5->[selected edge] (e.center) edge node {} (f.center);
|
||||
\path<5->[selected edge] (c.center) edge node {} (f.center);
|
||||
\path<6->[selected edge] (g.center) edge node {} (h.center);
|
||||
\path<6->[selected edge] (f.center) edge node {} (i.center);
|
||||
\end{pgfonlayer}
|
||||
\end{tikzpicture}
|
||||
}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\subsection{Aufgabe 9}
|
||||
\begin{frame}{Aufgabe 9, Teil 1}
|
||||
Im folgenden sind die ersten drei Graphen $G_1, G_2, G_3$ einer
|
||||
Folge $(G_n)$ aus Graphen abgebildet. Wie sieht $G_4$ aus?
|
||||
|
||||
\begin{gallery}
|
||||
\galleryimage{graphs/triangular-1}
|
||||
\galleryimage{graphs/triangular-2}
|
||||
\galleryimage{graphs/triangular-3}
|
||||
\end{gallery}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Aufgabe 9, Teil 2}
|
||||
Wieviele Ecken / Kanten hat $G_n = (E_n, K_n)$?
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Aufgabe 9, Teil 2: Antwort}
|
||||
Ecken:
|
||||
|
||||
\[|E_n| = |E_{n-1}| + (n+1) = \sum_{i=1}^{n+1} = \frac{n^2 + 2n+2}{2}\]
|
||||
|
||||
Kanten:
|
||||
|
||||
\begin{align}
|
||||
|K_n| &= |K_{n-1}| + \underbrace{((n+1)-1)+2}_{\text{außen}} + (n-1) \cdot 2\\
|
||||
&= |K_{n-1}| + n+2+2n-2\\
|
||||
&= |K_{n-1}| + 3n\\
|
||||
&= \sum_{i=1}^{n} 3i = 3 \sum_{i=1}^{n} i \\
|
||||
&= 3 \frac{n^2 + n}{2}
|
||||
\end{align}
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
\subsection{Bildquelle}
|
||||
\begin{frame}{Bildquelle}
|
||||
\begin{itemize}
|
||||
\item \href{http://commons.wikimedia.org/wiki/File:Konigsberg\_bridges.png}{http://commons.wikimedia.org/wiki/File:Konigsberg\_bridges.png}
|
||||
\item \href{http://commons.wikimedia.org/wiki/File:Unit\_disk\_graph.svg}{http://commons.wikimedia.org/wiki/File:Unit\_disk\_graph.svg}
|
||||
\item \href{http://goo.gl/maps/WnXRh}{Google Maps} (Grafiken \TCop 2013 Cnes/Spot Image, DigitalGlobe)
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
|
Binary file not shown.
|
@ -28,12 +28,37 @@ Kantenmenge bezeichnet.
|
|||
|
||||
\end{frame}
|
||||
|
||||
\framedgraphic{Modellierung, Flüsse, Netzwerke}{../images/Unit_disk_graph.png}
|
||||
\framedgraphic{Karten}{../images/map.png}
|
||||
|
||||
\begin{frame}{Isomorphe Graphen}
|
||||
\begin{center}
|
||||
\href{http://www.martin-thoma.de/uni/graph.html}{martin-thoma.de/uni/graph.html}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Grad einer Ecke}
|
||||
\begin{block}{Grad einer Ecke}
|
||||
Der \textbf{Grad} einer Ecke ist die Anzahl der Kanten, die von dieser Ecke
|
||||
ausgehen.
|
||||
\end{block}
|
||||
|
||||
\begin{block}{Isolierte Ecke}
|
||||
Hat eine Ecke den Grad 0, so nennt man ihn \textbf{isoliert}.
|
||||
\end{block}
|
||||
|
||||
\begin{gallery}
|
||||
\galleryimage{graphs/graph-1}
|
||||
\galleryimage{graphs/graph-2}
|
||||
\galleryimage{graphs/k-3-3}
|
||||
\galleryimage{graphs/k-5}\\
|
||||
\galleryimage{graphs/k-16}
|
||||
\galleryimage{graphs/graph-6}
|
||||
\galleryimage{graphs/star-graph}
|
||||
\galleryimage{graphs/tree}
|
||||
\end{gallery}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Aufgabe 1}
|
||||
Zeichnen Sie alle Graphen mit genau vier Ecken.
|
||||
|
||||
|
@ -45,10 +70,10 @@ Zeichnen Sie alle Graphen mit genau vier Ecken.
|
|||
\galleryimage{aufgabe-1/graph-11} % zwei Kanten -------------
|
||||
\galleryimage{aufgabe-1/graph-12} % drei Kanten: umgedrehtes u
|
||||
\galleryimage{aufgabe-1/graph-5} % drei Kanten
|
||||
\galleryimage[red]{aufgabe-1/graph-4} % drei Kanten:
|
||||
\galleryimage[red]{aufgabe-1/graph-4} % drei Kanten: S3 - fehlt im Buch
|
||||
\galleryimage{aufgabe-1/graph-10} % vier Kanten: Viereck
|
||||
\galleryimage[red]{aufgabe-1/graph-2}
|
||||
\galleryimage{aufgabe-1/graph-3} % vier Kanten: Dreieck mit Spitze
|
||||
\galleryimage[red]{aufgabe-1/graph-2} % fünf kanten - fehlt im Buch
|
||||
\galleryimage{aufgabe-1/graph-9} % fünf Kanten: nur Diagonale fehlt
|
||||
\galleryimage{aufgabe-1/graph-1} % sechs Kanten: K_4
|
||||
\end{gallery}
|
||||
|
|
|
@ -18,7 +18,7 @@
|
|||
\begin{block}{Eulerscher Kreis}
|
||||
Sei $G$ ein Graph und $A$ ein Kreis in $G$.
|
||||
|
||||
$A$ heißt \textbf{eulerscher Kreis} $:\Leftrightarrow \forall_{e \in E}: e \in A$.
|
||||
$A$ heißt \textbf{eulerscher Kreis} $:\Leftrightarrow \forall_{k \in K}: k \in A$.
|
||||
\end{block}
|
||||
|
||||
\begin{block}{Eulerscher Graph}
|
||||
|
@ -26,6 +26,22 @@ Ein Graph heißt \textbf{eulersch}, wenn er einen eulerschen Kreis enthält.
|
|||
\end{block}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Hamiltonkreis}
|
||||
ACHTUNG, VERWECHSLUNGSGEFAHR:
|
||||
|
||||
\begin{block}{Hamiltonkreis}
|
||||
Sei $G$ ein Graph und $A$ ein Kreis in $G$.
|
||||
|
||||
$A$ heißt \textbf{Hamilton-Kreis} $:\Leftrightarrow \forall_{e \in E}: e \in A$.
|
||||
\end{block}
|
||||
|
||||
\begin{block}{Eulerscher Kreis}
|
||||
Sei $G$ ein Graph und $A$ ein Kreis in $G$.
|
||||
|
||||
$A$ heißt \textbf{eulerscher Kreis} $:\Leftrightarrow \forall_{k \in K}: k \in A$.
|
||||
\end{block}
|
||||
\end{frame}
|
||||
|
||||
\pgfdeclarelayer{background}
|
||||
\pgfsetlayers{background,main}
|
||||
\begin{frame}{Eulerscher Kreis}
|
||||
|
@ -62,6 +78,55 @@ Ein Graph heißt \textbf{eulersch}, wenn er einen eulerschen Kreis enthält.
|
|||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\pgfdeclarelayer{background}
|
||||
\pgfsetlayers{background,main}
|
||||
\begin{frame}{Hamilton-Kreis, kein EK}
|
||||
\begin{center}
|
||||
\adjustbox{max size={\textwidth}{0.8\textheight}}{
|
||||
\begin{tikzpicture}
|
||||
\node (a)[vertex] at (0,0) {};
|
||||
\node (b)[vertex] at (2,0) {};
|
||||
\node (c)[vertex] at (2,2) {};
|
||||
\node (d)[vertex] at (0,2) {};
|
||||
|
||||
\foreach \from/\to in {a/b,b/c,c/d,d/a,a/c,b/d}
|
||||
\draw[line width=2pt] (\from) -- (\to);
|
||||
|
||||
\node<2->[vertex,red] (a) at (0,0) {};
|
||||
\node<3->[vertex,red] (b) at (2,0) {};
|
||||
\node<4->[vertex,red] (c) at (2,2) {};
|
||||
\node<5->[vertex,red] (d) at (0,2) {};
|
||||
\begin{pgfonlayer}{background}
|
||||
\path<3->[selected edge,black!50] (a.center) edge node {} (b.center);
|
||||
\path<4->[selected edge,black!50] (b.center) edge node {} (c.center);
|
||||
\path<5->[selected edge,black!50] (c.center) edge node {} (d.center);
|
||||
\path<6->[selected edge,black!50] (d.center) edge node {} (a.center);
|
||||
\end{pgfonlayer}
|
||||
\end{tikzpicture}
|
||||
}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\pgfdeclarelayer{background}
|
||||
\pgfsetlayers{background,main}
|
||||
\begin{frame}{Eulerkreis, kein HK}
|
||||
\begin{center}
|
||||
\adjustbox{max size={\textwidth}{0.8\textheight}}{
|
||||
\begin{tikzpicture}
|
||||
\node (a)[vertex] at (0,0) {};
|
||||
\node (b)[vertex] at (2,0) {};
|
||||
\node (c)[vertex] at (2,2) {};
|
||||
\node (d)[vertex] at (0,2) {};
|
||||
\node (e)[vertex] at (1,1) {};
|
||||
|
||||
\foreach \from/\to in {a/b,b/c,c/d,d/a,b/e,e/d}
|
||||
\draw[line width=2pt] (\from) -- (\to);
|
||||
\draw[line width=2pt] (b) to[bend right] (d);
|
||||
\end{tikzpicture}
|
||||
}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\subsection{Satz von Euler}
|
||||
\begin{frame}{Satz von Euler}
|
||||
\begin{block}{Satz von Euler}
|
||||
|
@ -99,7 +164,7 @@ ist $G$ eulersch.
|
|||
\pause
|
||||
$m=1$: Es gibt keinen Graphen in dem jede Ecke geraden Grad hat. \cmark\\
|
||||
\pause
|
||||
$m=2$: Nur ein zus. Graph möglich. Dieser ist eulersch. \cmark\\ % Anzeichnen
|
||||
$m=2$: Nur ein Graph möglich. Dieser ist eulersch. \cmark\\ % Anzeichnen
|
||||
\pause
|
||||
|
||||
\underline{I.V.:} Sei $m \in \mathbb{N}_0$ beliebig, aber fest und
|
||||
|
@ -109,11 +174,35 @@ denen jede Ecke geraden Grad hat, ist $G$ eulersch.
|
|||
|
||||
\pause
|
||||
|
||||
\underline{I.S.:} Jede Ecke von $G$ hat min. Grad 2.
|
||||
\underline{I.S.:} Sei $G=(E,K)$ mit $2 \leq m = |K|$. $G$ ist zus. \pause
|
||||
$\Rightarrow$ Jede Ecke von $G$ hat min. Grad 2. \pause
|
||||
$\xRightarrow[]{A. 5}$ Es gibt einen Kreis $C$ in $G$.\pause
|
||||
|
||||
\dots
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Umkehrung des Satzes von Euler}
|
||||
\begin{block}{Umkehrung des Satzes von Euler}
|
||||
Wenn in einem zusammenhängenden Graphen $G$ jede Ecke geraden Grad hat, dann
|
||||
ist $G$ eulersch.
|
||||
\end{block}
|
||||
\dots
|
||||
|
||||
Sei
|
||||
\[G_C = (E_C, K_C) \]
|
||||
Graph zu Kreis $C$ und
|
||||
|
||||
\[G^* = (E, K \setminus K_C).\] \pause
|
||||
$\Rightarrow$ Alle Knoten jeder Zusammenhangskomponente in $G^*$ haben geraden Grad\\
|
||||
\pause
|
||||
$\xRightarrow[]{IV}$ Alle $n$ Zhsgk. haben Eulerkreise $C_1, \dots, C_n$\\
|
||||
\pause
|
||||
$\Rightarrow$ $C_1, \dots, C_n$ können in $C$ \enquote{eingehängt} werden\\
|
||||
\pause
|
||||
$\Rightarrow G$ ist eulersch\pause $\Rightarrow $ Beh.
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Offene eulersche Linie}
|
||||
\begin{block}{Offene eulersche Linie}
|
||||
Sei $G$ ein Graph und $A$ ein Weg, der kein Kreis ist.
|
||||
|
@ -141,10 +230,13 @@ Sei $G=(E, K)$ ein zusammenhängender Graph und $L = (e_0, \dots, e_s)$ eine off
|
|||
eulersche Linie. \pause
|
||||
Sei $G^* = (E, K \cup \Set{e_s, e_0})$. \pause
|
||||
Es gibt einen Eulerkreis in $G^*$ \pause \\
|
||||
$\xRightarrow{\text{Satz von Euler}}$ In $G^*$ hat jede Ecke geraden Grad \pause \\
|
||||
$\xLeftrightarrow{\text{Satz von Euler}}$ In $G^*$ hat jede Ecke geraden Grad \pause \\
|
||||
Der Grad von nur zwei Kanten wurde um jeweils 1 erhöht \pause \\
|
||||
$\Rightarrow$ in $G$ haben genau 2 Ecken ungeraden Grad $\blacksquare$
|
||||
$\Leftrightarrow$ in $G$ haben genau 2 Ecken ungeraden Grad. Diese heißen $e_0, e_s$. $\blacksquare$
|
||||
\end{block}
|
||||
|
||||
\pause
|
||||
Rückrichtung analog
|
||||
\end{frame}
|
||||
|
||||
\pgfdeclarelayer{background}
|
||||
|
|
|
@ -1,7 +1,6 @@
|
|||
SOURCE = Graphentheorie-I
|
||||
|
||||
make:
|
||||
#latexmk -pdf -pdflatex="pdflatex -interactive=nonstopmode" -use-make $(SOURCE).tex
|
||||
pdflatex -shell-escape $(SOURCE).tex -output-format=pdf # shellescape wird fürs logo benötigt
|
||||
pdflatex -shell-escape $(SOURCE).tex -output-format=pdf # nochmaliges ausführen wegen Inhaltsverzeichnissen
|
||||
make clean
|
||||
|
|
|
@ -149,25 +149,3 @@ Es ex. ein Kantenzug, der $e_1$ und $e_2$ verbindet
|
|||
\galleryimage[Green]{graphs/tree}
|
||||
\end{gallery}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Grad einer Ecke}
|
||||
\begin{block}{Grad einer Ecke}
|
||||
Der \textbf{Grad} einer Ecke ist die Anzahl der Kanten, die von dieser Ecke
|
||||
ausgehen.
|
||||
\end{block}
|
||||
|
||||
\begin{block}{Isolierte Ecke}
|
||||
Hat eine Ecke den Grad 0, so nennt man ihn \textbf{isoliert}.
|
||||
\end{block}
|
||||
|
||||
\begin{gallery}
|
||||
\galleryimage{graphs/graph-1}
|
||||
\galleryimage{graphs/graph-2}
|
||||
\galleryimage{graphs/k-3-3}
|
||||
\galleryimage{graphs/k-5}\\
|
||||
\galleryimage{graphs/k-16}
|
||||
\galleryimage{graphs/graph-6}
|
||||
\galleryimage{graphs/star-graph}
|
||||
\galleryimage{graphs/tree}
|
||||
\end{gallery}
|
||||
\end{frame}
|
||||
|
|
|
@ -0,0 +1,21 @@
|
|||
\documentclass[varwidth=true, border=2pt]{standalone}
|
||||
\usepackage{tikz}
|
||||
\usetikzlibrary{arrows,positioning}
|
||||
\tikzset{
|
||||
%Define standard arrow tip
|
||||
>=stealth',
|
||||
% Define arrow style
|
||||
pil/.style={->,thick}
|
||||
}
|
||||
|
||||
\begin{document}
|
||||
\begin{tikzpicture}
|
||||
\node (a)[vertex] at (0,8) {$a$};
|
||||
\node (b)[vertex] at (0,4) {$b$};
|
||||
\node (c)[vertex] at (0,0) {$c$};
|
||||
\node (d)[vertex] at (4,4) {$d$};
|
||||
|
||||
\foreach \from/\to/\pos in {a/b/20,a/b/-20,a/d/0,b/c/20,b/c/-20,b/d/0,c/d/0}
|
||||
\draw[line width=2pt] (\from) to [bend left=\pos] (\to);
|
||||
\end{tikzpicture}
|
||||
\end{document}
|
|
@ -0,0 +1,22 @@
|
|||
\documentclass[varwidth=true, border=2pt]{standalone}
|
||||
\usepackage{tikz}
|
||||
\usetikzlibrary{arrows,positioning}
|
||||
\tikzset{
|
||||
%Define standard arrow tip
|
||||
>=stealth',
|
||||
% Define arrow style
|
||||
pil/.style={->,thick}
|
||||
}
|
||||
|
||||
\begin{document}
|
||||
\begin{tikzpicture}
|
||||
\node (a)[vertex] at (0,0) {};
|
||||
\node (b)[vertex] at (2,0) {};
|
||||
\node (c)[vertex] at (2,2) {};
|
||||
\node (d)[vertex] at (0,2) {};
|
||||
\node (d)[vertex] at (1,1) {};
|
||||
|
||||
\foreach \from/\to in {a/b,b/c,c/d,d/a,b/e,e/d}
|
||||
\draw[line width=2pt] (\from) -- (\to);
|
||||
\end{tikzpicture}
|
||||
\end{document}
|
|
@ -0,0 +1,21 @@
|
|||
\documentclass[varwidth=true, border=2pt]{standalone}
|
||||
\usepackage{tikz}
|
||||
\usetikzlibrary{arrows,positioning}
|
||||
\tikzset{
|
||||
%Define standard arrow tip
|
||||
>=stealth',
|
||||
% Define arrow style
|
||||
pil/.style={->,thick}
|
||||
}
|
||||
|
||||
\begin{document}
|
||||
\begin{tikzpicture}
|
||||
\node (a)[vertex] at (0,0) {};
|
||||
\node (b)[vertex] at (0,1) {};
|
||||
\node (c)[vertex] at (1,0) {};
|
||||
\node (d)[vertex] at (0,1) {};
|
||||
|
||||
\foreach \from/\to in {a/b,b/c,c/d,d/a,a/c,b/d}
|
||||
\draw[line width=2pt] (\from) -- (\to);
|
||||
\end{tikzpicture}
|
||||
\end{document}
|
|
@ -0,0 +1,19 @@
|
|||
% A complete graph
|
||||
% Author: Quintin Jean-Noël
|
||||
% <http://moais.imag.fr/membres/jean-noel.quintin/>
|
||||
\documentclass[varwidth=true, border=2pt]{standalone}
|
||||
\usepackage[nomessages]{fp}% http://ctan.org/pkg/fp
|
||||
\usepackage{tikz}
|
||||
\usetikzlibrary[topaths]
|
||||
|
||||
|
||||
\begin{document}
|
||||
\newcommand\n{5}
|
||||
\begin{tikzpicture}
|
||||
\node[vertex] (N1) at (0,0) {};
|
||||
\node[vertex] (N2) at (2,0) {};
|
||||
\node[vertex] (N3) at (1,1) {};
|
||||
|
||||
\draw (N1) -- (N3) -- (N2) -- (N1);
|
||||
\end{tikzpicture}
|
||||
\end{document}
|
|
@ -0,0 +1,21 @@
|
|||
% A complete graph
|
||||
% Author: Quintin Jean-Noël
|
||||
% <http://moais.imag.fr/membres/jean-noel.quintin/>
|
||||
\documentclass[varwidth=true, border=2pt]{standalone}
|
||||
\usepackage[nomessages]{fp}% http://ctan.org/pkg/fp
|
||||
\usepackage{tikz}
|
||||
\usetikzlibrary[topaths]
|
||||
|
||||
|
||||
\begin{document}
|
||||
\begin{tikzpicture}
|
||||
\node[vertex] (N1) at (0,0) {};
|
||||
\node[vertex] (N2) at (2,0) {};
|
||||
\node[vertex] (N3) at (4,0) {};
|
||||
\node[vertex] (N4) at (1,1) {};
|
||||
\node[vertex] (N5) at (3,1) {};
|
||||
\node[vertex] (N6) at (2,2) {};
|
||||
|
||||
\draw (N1) -- (N4) -- (N2) -- (N5) -- (N4) -- (N6) -- (N5) -- (N3) -- (N2) -- (N1);
|
||||
\end{tikzpicture}
|
||||
\end{document}
|
|
@ -0,0 +1,25 @@
|
|||
% A complete graph
|
||||
% Author: Quintin Jean-Noël
|
||||
% <http://moais.imag.fr/membres/jean-noel.quintin/>
|
||||
\documentclass[varwidth=true, border=2pt]{standalone}
|
||||
\usepackage[nomessages]{fp}% http://ctan.org/pkg/fp
|
||||
\usepackage{tikz}
|
||||
\usetikzlibrary[topaths]
|
||||
|
||||
|
||||
\begin{document}
|
||||
\begin{tikzpicture}
|
||||
\node[vertex] (N1) at (0,0) {};
|
||||
\node[vertex] (N2) at (2,0) {};
|
||||
\node[vertex] (N3) at (4,0) {};
|
||||
\node[vertex] (N4) at (6,0) {};
|
||||
\node[vertex] (N5) at (1,1) {};
|
||||
\node[vertex] (N6) at (3,1) {};
|
||||
\node[vertex] (N7) at (5,1) {};
|
||||
\node[vertex] (N8) at (2,2) {};
|
||||
\node[vertex] (N9) at (4,2) {};
|
||||
\node[vertex] (N10) at (3,3) {};
|
||||
|
||||
\draw (N1) -- (N5) -- (N2) -- (N6) -- (N3) -- (N7) -- (N6) -- (N5) -- (N8) -- (N6) -- (N9) -- (N8) -- (N10) -- (N9) -- (N7) -- (N4) -- (N3) -- (N2) -- (N1);
|
||||
\end{tikzpicture}
|
||||
\end{document}
|
Loading…
Add table
Add a link
Reference in a new issue