2
0
Fork 0
mirror of https://github.com/MartinThoma/LaTeX-examples.git synced 2025-04-26 06:48:04 +02:00

Kleine Fehler

This commit is contained in:
Martin Thoma 2014-02-18 17:03:30 +01:00
parent 9664df13f3
commit e4cefe4038
5 changed files with 2 additions and 2 deletions

Binary file not shown.

View file

@ -93,7 +93,7 @@ Anschaulich ist also ein $n$-dimensionale Mannigfaltigkeit lokal dem $\mdr^n$ ä
Karten: \\
$D_i := \{(x_1, \dots, x_{n+1}) \in S^n | x_i > 0\} \rightarrow \fB_1 (\underbrace{0, \dots, 0}_{\in \mdr^n})$\\
$C_i := \{(x_1, \dots, x_{n+1}) \in S^n | x_i < 0\}$\\
$C_i := \{(x_1, \dots, x_{n+1}) \in S^n | x_i < 0\} \rightarrow \fB_1 (0, \dots, 0)$\\
$(x_1, \dots, x_{n+1}) \mapsto (x_1, \dots, \cancel{x_i}, \dots, x_{n+1})$\footnote{$x_i$ wird rausgenommen}\\
$(x_1, \dots, x_{n}) \mapsto (x_1, \dots, x_{i-1}, \sqrt{1-\sum_{k=1}^n x_k^2}, x_i, \dots, x_n)$, oder $-\sqrt{1-\sum_{k=1}^n x_k^2}$ für $C_i$\\
$S^n = \bigcup_{i=1}^{n+1} (C_i \cup D_i)$

View file

@ -157,7 +157,7 @@ für eine $C^\infty$-Funktion $f: \mdr^3 \rightarrow \mdr$.
(d.~h. $s \in V$)
\[(u,v) \mapsto (x(u,v), y(u,v), z(u,v))\]
Für $p=F^{-1}(s) \in U$ sei
\[ J_F(u,v) = \begin{pmatrix}
\[ J_F(p) = \begin{pmatrix}
\frac{\partial x}{\partial u} (p) & \frac{\partial x}{\partial v} (p)\\
\frac{\partial y}{\partial u} (p) & \frac{\partial y}{\partial v} (p)\\
\frac{\partial z}{\partial u} (p) & \frac{\partial z}{\partial v} (p)