2
0
Fork 0
mirror of https://github.com/MartinThoma/LaTeX-examples.git synced 2025-04-19 11:38:05 +02:00

Added more images; converted list to a table; minor other changes

This commit is contained in:
Martin Thoma 2014-08-25 13:26:18 -04:00
parent e11b547ee7
commit e35e98c6cd
6 changed files with 44 additions and 15 deletions

Binary file not shown.

View file

@ -24,6 +24,7 @@
% \item and provide data and a platform to test new ideas for classifiers
% \end{itemize}
As soon as symbol recognition works good in terms of classification time and
performance, I will continue with formula recognition.
For now: recognition of isolated symbols. That means:
single symbol \enquote{formulae} rather than multi symbol formulae
\end{frame}

View file

@ -3,13 +3,19 @@
\textbf{Preprocessing:} Scaling, shifting and linear interpolation\\
\textbf{Features:} Coordinates of 80 points (4 strokes with 20 points each)\\
\textbf{Learning:} MLP, 300 epochs, LR of 0.1
\begin{itemize}
\item[] \textit{toplogy \tabto{6cm} error in training time}
\item 160:500:369 \tabto{6cm} 30.62 \% in \hphantom{0}9min 08s
\item 160:500:500:369 \tabto{6cm} 27.73 \% in 11min 49s
\item 160:500:500:500:369 \tabto{6cm} 34.79 \% in 14min 09s
\item 160:500:500:500:500:369 \tabto{6cm} 33.61 \% in 14min 06s
\end{itemize}
\begin{table}[h]
\begin{tabular}{lrl}
\toprule
Topology & Error & Training time \\ \midrule
160:500:369 & 30.62 \% & \hphantom{0}9min 08s \\
160:500:500:369 & 27.73 \% & 11min 49s \\
160:500:500:500:369 & 34.79 \% & 14min 09s \\
160:500:500:500:500:369 & 33.61 \% & 14min 06s \\
\bottomrule
\end{tabular}
\end{table}
\end{frame}
\begin{frame}[fragile]{Examples of confusable symbols}

View file

@ -3,7 +3,7 @@
\begin{itemize}
\item Evaluate preprocessing steps
\item Try other features
\item Try other topologies / trainings (e.g. newbob)
\item Try other topologies / trainings (e.g. pretraining, newbob)
\end{itemize}
\end{frame}

View file

@ -2,12 +2,34 @@
\begin{frame}{write-math.com}
\begin{itemize}
\item a website where users can add labeled training data
\item a website where users can add labeled training data and unlabeled
data which they want to classify. I call this data \enquote{recording}
\begin{figure}[ht]
\centering
\subfloat{
\includegraphics[height=0.1\textwidth]{../images/279952.pdf}
}%
\qquad
\subfloat{
\includegraphics[height=0.1\textwidth]{../images/281507.pdf}
}%
\qquad
\subfloat{
\includegraphics[height=0.1\textwidth]{../images/287612.pdf}
}%
\qquad
\subfloat{
\includegraphics[height=0.1\textwidth]{../images/292175.pdf}
}%
\caption*{4 recordings}
\end{figure}
\item works with desktop computers and touch devices
\item symbol recognition can be done by multiple classifiers
\item users can contribute formulas
\item users can vote for formulas
\item user who wrote the formula can accept one formula
\item users can contribute formulas as recordings and as \LaTeX{} answers
for recordings
\item users can vote for \LaTeX{} answers:
\Large $\leq$, $\leqq$, $\leqslant$, \dots \normalsize
\item user who wrote the formula can accept one answer
\end{itemize}
\end{frame}

View file

@ -19,7 +19,7 @@
\usepackage{tikz}
\usetikzlibrary{arrows,shapes}
\usepackage{relsize}
\usepackage{subfigure}
\usepackage{subfig}
\usepackage{algorithm,algpseudocode}
\usepackage{minted} % needed for the inclusion of source code
\usepackage{menukeys}