mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-11 15:38:15 +02:00
Submit changes before installing new os
This commit is contained in:
parent
cd6681720f
commit
e03eaa277b
6 changed files with 163 additions and 52 deletions
|
@ -163,22 +163,6 @@ Coding conventions and basic OOP was part of the course. All of my German presen
|
|||
and a big, but algorithmically not challenging project. To be honest,
|
||||
I only fixed some Java bugs.}\\
|
||||
|
||||
%----------------------------------------------------------------------------------------
|
||||
% WORK EXPERIENCE -2-
|
||||
|
||||
{\raggedleft\textsc{2011}\par}
|
||||
|
||||
{\raggedright\large Student research assistant at \textsc{ Institute of Toxicology and Genetics}, KIT\\
|
||||
\textit{participating in a university research project}\\[5pt]}
|
||||
|
||||
\normalsize{In summer 2011 I worked for over a month for a
|
||||
research project at KIT. I have written bash scripts for file
|
||||
conversions, fixed some bugs and re-written a slow Mathematica script
|
||||
in a much faster Python version. But it quickly turned out that
|
||||
this project had a lot of C++ source which was rarely commented or
|
||||
documented. I realized, that I wouldn't have time for this project
|
||||
after beginning my studies at university.}\\
|
||||
|
||||
%----------------------------------------------------------------------------------------
|
||||
% WORK EXPERIENCE -4-
|
||||
|
||||
|
@ -208,7 +192,7 @@ after beginning my studies at university.}\\
|
|||
|
||||
\colorbox{shade}{\textcolor{text1}{
|
||||
\begin{tabular}{c|p{7cm}}
|
||||
\raisebox{-4pt}{\textifsymbol{18}} & Parkstraße 17, 76131 Karlsruhe \\ % Address
|
||||
\raisebox{-4pt}{\textifsymbol{18}} & Alte Allee 107, 81245 Munich \\ % Address
|
||||
\raisebox{-3pt}{\Mobilefone} & +49 $($1636$)$ 28 04 91 \\ % Phone number
|
||||
\raisebox{-1pt}{\Letter} & \href{mailto:info@martin-thoma.de}{info@martin-thoma.de} \\ % Email address
|
||||
\Keyboard & \href{http://martin-thoma.com}{martin-thoma.com} \\ % Website
|
||||
|
@ -331,6 +315,22 @@ Good Knowledge & \textsc{Python}\\ \\
|
|||
%----------------------------------------------------------------------------------------
|
||||
|
||||
\section{Work Experience}
|
||||
%----------------------------------------------------------------------------------------
|
||||
% WORK EXPERIENCE -2-
|
||||
|
||||
{\raggedleft\textsc{2011}\par}
|
||||
|
||||
{\raggedright\large Student research assistant at \textsc{ Institute of Toxicology and Genetics}, KIT\\
|
||||
\textit{participating in a university research project}\\[5pt]}
|
||||
|
||||
\normalsize{In summer 2011 I worked for over a month for a
|
||||
research project at KIT. I have written bash scripts for file
|
||||
conversions, fixed some bugs and re-written a slow Mathematica script
|
||||
in a much faster Python version. But it quickly turned out that
|
||||
this project had a lot of C++ source which was rarely commented or
|
||||
documented. I realized, that I wouldn't have time for this project
|
||||
after beginning my studies at university.}\\
|
||||
|
||||
%----------------------------------------------------------------------------------------
|
||||
% WORK EXPERIENCE -3-
|
||||
|
||||
|
|
Binary file not shown.
|
@ -1,7 +1,8 @@
|
|||
\begin{abstract}
|
||||
This paper reviews the most common activation functions for convolution neural
|
||||
networks. They are evaluated on TODO dataset and possible reasons for the
|
||||
differences in their performance are given.
|
||||
networks. They are evaluated on the Asirra, GTSRB, HASYv2, STL-10, CIFAR-10,
|
||||
CIFAR-100 and MNIST dataset. Possible reasons for the differences in their
|
||||
performance are given.
|
||||
|
||||
New state of the art results are achieved for TODO.
|
||||
New state of the art results are achieved for Asirra, GTSRB, HASYv2 and STL-10.
|
||||
\end{abstract}
|
||||
|
|
|
@ -7,17 +7,17 @@
|
|||
\centering
|
||||
\hspace*{-1cm}\begin{tabular}{lllll}
|
||||
\toprule
|
||||
Name & Function $\varphi(x)$ & Range of Values & $\varphi'(x)$ \\\midrule % & Used by
|
||||
Sign function$^\dagger$ & $\begin{cases}+1 &\text{if } x \geq 0\\-1 &\text{if } x < 0\end{cases}$ & $\Set{-1,1}$ & $0$ \\%& \cite{971754} \\
|
||||
\parbox[t]{2.6cm}{Heaviside\\step function$^\dagger$} & $\begin{cases}+1 &\text{if } x > 0\\0 &\text{if } x < 0\end{cases}$ & $\Set{0, 1}$ & $0$ \\%& \cite{mcculloch1943logical}\\
|
||||
Logistic function & $\frac{1}{1+e^{-x}}$ & $[0, 1]$ & $\frac{e^x}{(e^x +1)^2}$ \\%& \cite{duch1999survey} \\
|
||||
Tanh & $\frac{e^x - e^{-x}}{e^x + e^{-x}} = \tanh(x)$ & $[-1, 1]$ & $\sech^2(x)$ \\%& \cite{LeNet-5,Thoma:2014}\\
|
||||
\gls{ReLU}$^\dagger$ & $\max(0, x)$ & $[0, +\infty)$ & $\begin{cases}1 &\text{if } x > 0\\0 &\text{if } x < 0\end{cases}$ \\%& \cite{AlexNet-2012}\\
|
||||
\parbox[t]{2.6cm}{\gls{LReLU}$^\dagger$\footnotemark\\(\gls{PReLU})} & $\varphi(x) = \max(\alpha x, x)$ & $(-\infty, +\infty)$ & $\begin{cases}1 &\text{if } x > 0\\\alpha &\text{if } x < 0\end{cases}$ \\%& \cite{maas2013rectifier,he2015delving} \\
|
||||
Softplus & $\log(e^x + 1)$ & $(0, +\infty)$ & $\frac{e^x}{e^x + 1}$ \\%& \cite{dugas2001incorporating,glorot2011deep} \\
|
||||
\gls{ELU} & $\begin{cases}x &\text{if } x > 0\\\alpha (e^x - 1) &\text{if } x \leq 0\end{cases}$ & $(-\infty, +\infty)$ & $\begin{cases}1 &\text{if } x > 0\\\alpha e^x &\text{otherwise}\end{cases}$ \\%& \cite{clevert2015fast} \\
|
||||
Softmax$^\ddagger$ & $o(\mathbf{x})_j = \frac{e^{x_j}}{\sum_{k=1}^K e^{x_k}}$ & $[0, 1]^K$ & $o(\mathbf{x})_j \cdot \frac{\sum_{k=1}^K e^{x_k} - e^{x_j}}{\sum_{k=1}^K e^{x_k}}$ \\%& \cite{AlexNet-2012,Thoma:2014}\\
|
||||
Maxout$^\ddagger$ & $o(\mathbf{x}) = \max_{x \in \mathbf{x}} x$ & $(-\infty, +\infty)$ & $\begin{cases}1 &\text{if } x_i = \max \mathbf{x}\\0 &\text{otherwise}\end{cases}$ \\%& \cite{goodfellow2013maxout} \\
|
||||
Name & Function $\varphi(x)$ & Range of Values & $\varphi'(x)$ & Used by \\\midrule %
|
||||
Sign function$^\dagger$ & $\begin{cases}+1 &\text{if } x \geq 0\\-1 &\text{if } x < 0\end{cases}$ & $\Set{-1,1}$ & $0$ & \cite{971754} \\
|
||||
\parbox[t]{2.6cm}{Heaviside\\step function$^\dagger$} & $\begin{cases}+1 &\text{if } x > 0\\0 &\text{if } x < 0\end{cases}$ & $\Set{0, 1}$ & $0$ & \cite{mcculloch1943logical}\\
|
||||
Logistic function & $\frac{1}{1+e^{-x}}$ & $[0, 1]$ & $\frac{e^x}{(e^x +1)^2}$ & \cite{duch1999survey} \\
|
||||
Tanh & $\frac{e^x - e^{-x}}{e^x + e^{-x}} = \tanh(x)$ & $[-1, 1]$ & $\sech^2(x)$ & \cite{LeNet-5,Thoma:2014}\\
|
||||
\gls{ReLU}$^\dagger$ & $\max(0, x)$ & $[0, +\infty)$ & $\begin{cases}1 &\text{if } x > 0\\0 &\text{if } x < 0\end{cases}$ & \cite{AlexNet-2012}\\
|
||||
\parbox[t]{2.6cm}{\gls{LReLU}$^\dagger$\footnotemark\\(\gls{PReLU})} & $\varphi(x) = \max(\alpha x, x)$ & $(-\infty, +\infty)$ & $\begin{cases}1 &\text{if } x > 0\\\alpha &\text{if } x < 0\end{cases}$ & \cite{maas2013rectifier,he2015delving} \\
|
||||
Softplus & $\log(e^x + 1)$ & $(0, +\infty)$ & $\frac{e^x}{e^x + 1}$ & \cite{dugas2001incorporating,glorot2011deep} \\
|
||||
\gls{ELU} & $\begin{cases}x &\text{if } x > 0\\\alpha (e^x - 1) &\text{if } x \leq 0\end{cases}$ & $(-\infty, +\infty)$ & $\begin{cases}1 &\text{if } x > 0\\\alpha e^x &\text{otherwise}\end{cases}$ & \cite{clevert2015fast} \\
|
||||
Softmax$^\ddagger$ & $o(\mathbf{x})_j = \frac{e^{x_j}}{\sum_{k=1}^K e^{x_k}}$ & $[0, 1]^K$ & $o(\mathbf{x})_j \cdot \frac{\sum_{k=1}^K e^{x_k} - e^{x_j}}{\sum_{k=1}^K e^{x_k}}$ & \cite{AlexNet-2012,Thoma:2014}\\
|
||||
Maxout$^\ddagger$ & $o(\mathbf{x}) = \max_{x \in \mathbf{x}} x$ & $(-\infty, +\infty)$ & $\begin{cases}1 &\text{if } x_i = \max \mathbf{x}\\0 &\text{otherwise}\end{cases}$ & \cite{goodfellow2013maxout} \\
|
||||
\bottomrule
|
||||
\end{tabular}
|
||||
\caption[Activation functions]{Overview of activation functions. Functions
|
||||
|
@ -63,13 +63,11 @@
|
|||
\end{tabular}
|
||||
\caption[Activation function evaluation results on CIFAR-100]{Training and
|
||||
test accuracy of adjusted baseline models trained with different
|
||||
activation functions on CIFAR-100. For LReLU, $\alpha = 0.3$ was
|
||||
activation functions on CIFAR-100. For \gls{LReLU}, $\alpha = 0.3$ was
|
||||
chosen.}
|
||||
\label{table:CIFAR-100-accuracies-activation-functions}
|
||||
\end{table}
|
||||
|
||||
\glsreset{LReLU}
|
||||
|
||||
\begin{table}[H]
|
||||
\centering
|
||||
\setlength\tabcolsep{1.5pt}
|
||||
|
@ -91,7 +89,7 @@
|
|||
\end{tabular}
|
||||
\caption[Activation function evaluation results on HASYv2]{Test accuracy of
|
||||
adjusted baseline models trained with different activation
|
||||
functions on HASYv2. For LReLU, $\alpha = 0.3$ was chosen.}
|
||||
functions on HASYv2. For \gls{LReLU}, $\alpha = 0.3$ was chosen.}
|
||||
\label{table:HASYv2-accuracies-activation-functions}
|
||||
\end{table}
|
||||
|
||||
|
@ -116,8 +114,93 @@
|
|||
\end{tabular}
|
||||
\caption[Activation function evaluation results on STL-10]{Test accuracy of
|
||||
adjusted baseline models trained with different activation
|
||||
functions on STL-10. For LReLU, $\alpha = 0.3$ was chosen.}
|
||||
functions on STL-10. For \gls{LReLU}, $\alpha = 0.3$ was chosen.}
|
||||
\label{table:STL-10-accuracies-activation-functions}
|
||||
\end{table}
|
||||
|
||||
\begin{table}[H]
|
||||
\centering
|
||||
\hspace*{-1cm}\begin{tabular}{lllll}
|
||||
\toprule
|
||||
Name & Function $\varphi(x)$ & Range of Values & $\varphi'(x)$ \\\midrule % & Used by
|
||||
Sign function$^\dagger$ & $\begin{cases}+1 &\text{if } x \geq 0\\-1 &\text{if } x < 0\end{cases}$ & $\Set{-1,1}$ & $0$ \\%& \cite{971754} \\
|
||||
\parbox[t]{2.6cm}{Heaviside\\step function$^\dagger$} & $\begin{cases}+1 &\text{if } x > 0\\0 &\text{if } x < 0\end{cases}$ & $\Set{0, 1}$ & $0$ \\%& \cite{mcculloch1943logical}\\
|
||||
Logistic function & $\frac{1}{1+e^{-x}}$ & $[0, 1]$ & $\frac{e^x}{(e^x +1)^2}$ \\%& \cite{duch1999survey} \\
|
||||
Tanh & $\frac{e^x - e^{-x}}{e^x + e^{-x}} = \tanh(x)$ & $[-1, 1]$ & $\sech^2(x)$ \\%& \cite{LeNet-5,Thoma:2014}\\
|
||||
\gls{ReLU}$^\dagger$ & $\max(0, x)$ & $[0, +\infty)$ & $\begin{cases}1 &\text{if } x > 0\\0 &\text{if } x < 0\end{cases}$ \\%& \cite{AlexNet-2012}\\
|
||||
\parbox[t]{2.6cm}{\gls{LReLU}$^\dagger$\footnotemark\\(\gls{PReLU})} & $\varphi(x) = \max(\alpha x, x)$ & $(-\infty, +\infty)$ & $\begin{cases}1 &\text{if } x > 0\\\alpha &\text{if } x < 0\end{cases}$ \\%& \cite{maas2013rectifier,he2015delving} \\
|
||||
Softplus & $\log(e^x + 1)$ & $(0, +\infty)$ & $\frac{e^x}{e^x + 1}$ \\%& \cite{dugas2001incorporating,glorot2011deep} \\
|
||||
\gls{ELU} & $\begin{cases}x &\text{if } x > 0\\\alpha (e^x - 1) &\text{if } x \leq 0\end{cases}$ & $(-\infty, +\infty)$ & $\begin{cases}1 &\text{if } x > 0\\\alpha e^x &\text{otherwise}\end{cases}$ \\%& \cite{clevert2015fast} \\
|
||||
Softmax$^\ddagger$ & $o(\mathbf{x})_j = \frac{e^{x_j}}{\sum_{k=1}^K e^{x_k}}$ & $[0, 1]^K$ & $o(\mathbf{x})_j \cdot \frac{\sum_{k=1}^K e^{x_k} - e^{x_j}}{\sum_{k=1}^K e^{x_k}}$ \\%& \cite{AlexNet-2012,Thoma:2014}\\
|
||||
Maxout$^\ddagger$ & $o(\mathbf{x}) = \max_{x \in \mathbf{x}} x$ & $(-\infty, +\infty)$ & $\begin{cases}1 &\text{if } x_i = \max \mathbf{x}\\0 &\text{otherwise}\end{cases}$ \\%& \cite{goodfellow2013maxout} \\
|
||||
\bottomrule
|
||||
\end{tabular}
|
||||
\caption[Activation functions]{Overview of activation functions. Functions
|
||||
marked with $\dagger$ are not differentiable at 0 and functions
|
||||
marked with $\ddagger$ operate on all elements of a layer
|
||||
simultaneously. The hyperparameters $\alpha \in (0, 1)$ of Leaky
|
||||
ReLU and ELU are typically $\alpha = 0.01$. Other activation
|
||||
function like randomized leaky ReLUs exist~\cite{xu2015empirical},
|
||||
but are far less commonly used.\\
|
||||
Some functions are smoothed versions of others, like the logistic
|
||||
function for the Heaviside step function, tanh for the sign
|
||||
function, softplus for ReLU.\\
|
||||
Softmax is the standard activation function for the last layer of
|
||||
a classification network as it produces a probability
|
||||
distribution. See \Cref{fig:activation-functions-plot} for a plot
|
||||
of some of them.}
|
||||
\label{table:activation-functions-overview}
|
||||
\end{table}
|
||||
\footnotetext{$\alpha$ is a hyperparameter in leaky ReLU, but a learnable parameter in the parametric ReLU function.}
|
||||
|
||||
\begin{figure}[ht]
|
||||
\centering
|
||||
\begin{tikzpicture}
|
||||
\definecolor{color1}{HTML}{E66101}
|
||||
\definecolor{color2}{HTML}{FDB863}
|
||||
\definecolor{color3}{HTML}{B2ABD2}
|
||||
\definecolor{color4}{HTML}{5E3C99}
|
||||
\begin{axis}[
|
||||
legend pos=north west,
|
||||
legend cell align={left},
|
||||
axis x line=middle,
|
||||
axis y line=middle,
|
||||
x tick label style={/pgf/number format/fixed,
|
||||
/pgf/number format/fixed zerofill,
|
||||
/pgf/number format/precision=1},
|
||||
y tick label style={/pgf/number format/fixed,
|
||||
/pgf/number format/fixed zerofill,
|
||||
/pgf/number format/precision=1},
|
||||
grid = major,
|
||||
width=16cm,
|
||||
height=8cm,
|
||||
grid style={dashed, gray!30},
|
||||
xmin=-2, % start the diagram at this x-coordinate
|
||||
xmax= 2, % end the diagram at this x-coordinate
|
||||
ymin=-1, % start the diagram at this y-coordinate
|
||||
ymax= 2, % end the diagram at this y-coordinate
|
||||
xlabel=x,
|
||||
ylabel=y,
|
||||
tick align=outside,
|
||||
enlargelimits=false]
|
||||
\addplot[domain=-2:2, color1, ultra thick,samples=500] {1/(1+exp(-x))};
|
||||
\addplot[domain=-2:2, color2, ultra thick,samples=500] {tanh(x)};
|
||||
\addplot[domain=-2:2, color4, ultra thick,samples=500] {max(0, x)};
|
||||
\addplot[domain=-2:2, color4, ultra thick,samples=500, dashed] {ln(exp(x) + 1)};
|
||||
\addplot[domain=-2:2, color3, ultra thick,samples=500, dotted] {max(x, exp(x) - 1)};
|
||||
\addlegendentry{$\varphi_1(x)=\frac{1}{1+e^{-x}}$}
|
||||
\addlegendentry{$\varphi_2(x)=\tanh(x)$}
|
||||
\addlegendentry{$\varphi_3(x)=\max(0, x)$}
|
||||
\addlegendentry{$\varphi_4(x)=\log(e^x + 1)$}
|
||||
\addlegendentry{$\varphi_5(x)=\max(x, e^x - 1)$}
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\caption[Activation functions]{Activation functions plotted in $[-2, +2]$.
|
||||
$\tanh$ and ELU are able to produce negative numbers. The image of
|
||||
ELU, ReLU and Softplus is not bound on the positive side, whereas
|
||||
$\tanh$ and the logistic function are always below~1.}
|
||||
\label{fig:activation-functions-plot}
|
||||
\end{figure}
|
||||
|
||||
\glsreset{LReLU}
|
||||
\twocolumn
|
|
@ -1,24 +1,42 @@
|
|||
%!TEX root = main.tex
|
||||
\section{Introduction}
|
||||
TODO\cite{Thoma:2014}
|
||||
Artificial neural networks have dozends of hyperparameters which influence
|
||||
their behaviour during training and evaluation time. One parameter is the
|
||||
choice of activation functions. While in principle every neuron could have a
|
||||
different activation function, in practice networks only use two activation
|
||||
functions: The softmax function for the output layer in order to obtain a
|
||||
probability distribution over the possible classes and one activation function
|
||||
for all other neurons.
|
||||
|
||||
\section{Terminology}
|
||||
TODO
|
||||
Activation functions should have the following properties:
|
||||
\begin{itemize}
|
||||
\item \textbf{Non-linearity}: A linear activation function in a simple feed
|
||||
forward network leads to a linear function. This means no matter how
|
||||
many layers the network uses, there is an equivalent network with
|
||||
only the input and the output layer. Please note that \glspl{CNN} are
|
||||
different. Padding and pooling are also non-linear operations.
|
||||
\item \textbf{Differentiability}: Activation functions need to be
|
||||
differentiable in order to be able to apply gradient descent. It is
|
||||
not necessary that they are differentiable at any point. In practice,
|
||||
the gradient at non-differentiable points can simply be set to zero
|
||||
in order to prevent weight updates at this point.
|
||||
\item \textbf{Non-zero gradient}: The sign function is not suitable for
|
||||
gradient descent based optimizers as its gradient is zero at all
|
||||
differentiable points. An activation function should have infinitely
|
||||
many points with non-zero gradient.
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\section{Activation Functions}
|
||||
Nonlinear, differentiable activation functions are important for neural
|
||||
networks to allow them to learn nonlinear decision boundaries. One of the
|
||||
simplest and most widely used activation functions for \glspl{CNN} is
|
||||
\gls{ReLU}~\cite{AlexNet-2012}, but others such as
|
||||
One of the simplest and most widely used activation functions for \glspl{CNN}
|
||||
is \gls{ReLU}~\cite{AlexNet-2012}, but others such as
|
||||
\gls{ELU}~\cite{clevert2015fast}, \gls{PReLU}~\cite{he2015delving}, softplus~\cite{7280459}
|
||||
and softsign~\cite{bergstra2009quadratic} have been proposed. The baseline uses
|
||||
\gls{ELU}.
|
||||
and softsign~\cite{bergstra2009quadratic} have been proposed.
|
||||
|
||||
Activation functions differ in the range of values and the derivative. The
|
||||
definitions and other comparisons of eleven activation functions are given
|
||||
in~\cref{table:activation-functions-overview}.
|
||||
|
||||
|
||||
\section{Important Differences of Proposed Activation Functions}
|
||||
Theoretical explanations why one activation function is preferable to another
|
||||
in some scenarios are the following:
|
||||
\begin{itemize}
|
||||
|
@ -96,6 +114,7 @@ in~\cref{table:HASYv2-accuracies-activation-functions}. For both datasets, the
|
|||
logistic function has a much shorter training time and a noticeably lower test
|
||||
accuracy.
|
||||
|
||||
\glsunset{LReLU}
|
||||
\begin{table}[H]
|
||||
\centering
|
||||
\begin{tabular}{lccc}
|
||||
|
@ -111,7 +130,7 @@ accuracy.
|
|||
ReLU & \cellcolor{yellow!25}Yes\footnotemark & \cellcolor{red!25} No & \cellcolor{yellow!25}Half-sided \\
|
||||
Softplus & \cellcolor{green!25}No & \cellcolor{red!25} No & \cellcolor{yellow!25}Half-sided \\
|
||||
S2ReLU & \cellcolor{green!25}No & \cellcolor{green!25}Yes & \cellcolor{green!25} No \\
|
||||
LReLU/PReLU & \cellcolor{green!25}No & \cellcolor{green!25}Yes & \cellcolor{green!25} No \\
|
||||
\gls{LReLU}/PReLU & \cellcolor{green!25}No & \cellcolor{green!25}Yes & \cellcolor{green!25} No \\
|
||||
ELU & \cellcolor{green!25}No & \cellcolor{green!25}Yes & \cellcolor{green!25} No \\
|
||||
\bottomrule
|
||||
\end{tabular}
|
||||
|
@ -120,8 +139,6 @@ accuracy.
|
|||
\end{table}
|
||||
\footnotetext{The dying ReLU problem is similar to the vanishing gradient problem.}
|
||||
|
||||
\glsunset{LReLU}
|
||||
|
||||
\begin{table}[H]
|
||||
\centering
|
||||
\begin{tabular}{lccclllll}
|
||||
|
@ -173,4 +190,5 @@ accuracy.
|
|||
functions on MNIST.}
|
||||
\label{table:MNIST-accuracies-activation-functions}
|
||||
\end{table}
|
||||
\glsreset{LReLU}
|
||||
\glsreset{LReLU}
|
||||
|
||||
|
|
|
@ -7,7 +7,15 @@
|
|||
\usepackage{amsmath,amssymb}
|
||||
\usepackage[table]{xcolor}
|
||||
\usepackage[absolute,overlay]{textpos}
|
||||
\usepackage{pgfplots}
|
||||
\pgfplotsset{compat=1.13}
|
||||
\usepackage{tikz}
|
||||
\usetikzlibrary{arrows.meta}
|
||||
\usetikzlibrary{decorations.pathreplacing}
|
||||
\usetikzlibrary{positioning}
|
||||
\usetikzlibrary{decorations.text}
|
||||
\usetikzlibrary{decorations.pathmorphing}
|
||||
\usetikzlibrary{shapes.multipart, calc}
|
||||
\usepackage{csquotes}
|
||||
\usepackage[binary-units,group-separator={,}]{siunitx}
|
||||
\sisetup{per-mode=fraction,
|
||||
|
@ -59,7 +67,7 @@
|
|||
\usepackage{braket} % needed for \Set
|
||||
\usepackage{algorithm,algpseudocode}
|
||||
|
||||
\usepackage[xindy,toc,section=chapter,numberedsection=autolabel]{glossaries}
|
||||
\usepackage[xindy,toc,section=section]{glossaries}
|
||||
|
||||
% Make document nicer
|
||||
\DeclareMathOperator*{\argmin}{arg\,min}
|
||||
|
@ -93,6 +101,7 @@
|
|||
\input{content}
|
||||
\bibliographystyle{IEEEtranSA}
|
||||
\bibliography{bibliography}
|
||||
\printglossaries%
|
||||
\input{appendix}
|
||||
|
||||
|
||||
|
|
Loading…
Add table
Reference in a new issue