mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-26 06:48:04 +02:00
misc
This commit is contained in:
parent
1a8f76a056
commit
dc82db6336
4 changed files with 28 additions and 6 deletions
|
@ -109,8 +109,16 @@ $a \leq b$, $m \neq 0$ be a linear function.
|
|||
\end{figure}
|
||||
|
||||
The point with minimum distance can be found by:
|
||||
\[\underset{x\in\mdr}{\arg \min d_{P,f}(x)} = \begin{cases}
|
||||
\[\underset{x\in[a,b]}{\arg \min d_{P,f}(x)} = \begin{cases}
|
||||
S_1(f, P) &\text{if } S_1(f, P) \cap [a,b] \neq \emptyset\\
|
||||
\Set{a} &\text{if } S_1(f, P) \ni x < a\\
|
||||
\Set{b} &\text{if } S_1(f, P) \ni x > b
|
||||
\end{cases}\]
|
||||
|
||||
Because:
|
||||
\begin{align}
|
||||
\underset{x\in[a,b]}{\arg \min d_{P,f}(x)} &= \underset{x\in[a,b]}{\arg \min d_{P,f}(x)^2}\\
|
||||
&=\underset{x\in[a,b]}{\arg \min} x^2 - 2x_P x + (x_P^2 + y_P^2 - 2 y_P c + c^2)\\
|
||||
&=\underset{x\in[a,b]}{\arg \min} x^2 - 2 x_P x + x_P^2\\
|
||||
&=\underset{x\in[a,b]}{\arg \min} (x-x_P)^2\\
|
||||
\end{align}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue