2
0
Fork 0
mirror of https://github.com/MartinThoma/LaTeX-examples.git synced 2025-04-26 06:48:04 +02:00
This commit is contained in:
Martin Thoma 2013-12-16 10:51:15 +01:00
parent 1a8f76a056
commit dc82db6336
4 changed files with 28 additions and 6 deletions

View file

@ -1,6 +1,7 @@
\chapter{Constant functions}
\section{Defined on $\mdr$}
Let $f:\mdr \rightarrow \mdr$, $f(x) := c$ with $c \in \mdr$ be a constant function.
The situation can be seen in Figure~\ref{fig:constant-min-distance}.
\begin{figure}[htp]
\centering
@ -42,11 +43,21 @@ Let $f:\mdr \rightarrow \mdr$, $f(x) := c$ with $c \in \mdr$ be a constant funct
\label{fig:constant-min-distance}
\end{figure}
\begin{align}
d_{P,f}(x) &= \sqrt{(x_P - x)^2 + (y_P - f(x))^2}\\
&= \sqrt{(x_P^2 - 2x_P x + x^2) + (y_P^2 - 2 y_P c + c^2)} \\
&= \sqrt{x^2 - 2 x_P x + (x_P^2 + y_P^2 - 2 y_P c + c^2)}\label{eq:constant-function-distance}\\
\xRightarrow{\text{Theorem}~\ref{thm:fermats-theorem}} 0 &\stackrel{!}{=} (d_{P,f}(x)^2)'\\
&= 2x - 2x_P\\
\Leftrightarrow x &\stackrel{!}{=} x_P
\end{align}
Then $(x_P,f(x_P))$ has
minimal distance to $P$. Every other point has higher distance.
See Figure~\ref{fig:constant-min-distance}.
See Figure~\ref{fig:constant-min-distance} to see that intuition
yields to the same results.
This means:
This result means:
\[S_0(f, P) = \Set{x_P} \text{ with } P = (x_P, y_P)\]
\clearpage