mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-26 06:48:04 +02:00
added some ideas for the case of intervalls [a,b] of R
This commit is contained in:
parent
7ccd761463
commit
d53905494b
6 changed files with 159 additions and 10 deletions
|
@ -1,12 +1,13 @@
|
|||
\chapter{Constant functions}
|
||||
\section{Defined on $\mdr$}
|
||||
Let $f(x) = c$ with $c \in \mdr$ be a constant function.
|
||||
Let $f:\mdr \rightarrow \mdr$, $f(x) := c$ with $c \in \mdr$ be a constant function.
|
||||
|
||||
\begin{figure}[htp]
|
||||
\centering
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[
|
||||
legend pos=north west,
|
||||
legend cell align=left,
|
||||
axis x line=middle,
|
||||
axis y line=middle,
|
||||
grid = major,
|
||||
|
@ -45,4 +46,62 @@ Then $(x_P,f(x_P))$ has
|
|||
minimal distance to $P$. Every other point has higher distance.
|
||||
See Figure~\ref{fig:constant-min-distance}.
|
||||
|
||||
\section{Defined on a closed interval of $\mdr$}
|
||||
This means:
|
||||
|
||||
\[S_0(f, P) = \Set{x_P} \text{ with } P = (x_P, y_P)\]
|
||||
\clearpage
|
||||
|
||||
\section{Defined on a closed interval $[a,b] \subseteq \mdr$}
|
||||
Let $f:[a,b] \rightarrow \mdr$, $f(x) := c$ with $a,b,c \in \mdr$ and
|
||||
$a \leq b$ be a constant function.
|
||||
|
||||
\begin{figure}[htp]
|
||||
\centering
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[
|
||||
legend pos=north west,
|
||||
legend cell align=left,
|
||||
axis x line=middle,
|
||||
axis y line=middle,
|
||||
grid = major,
|
||||
width=0.8\linewidth,
|
||||
height=8cm,
|
||||
grid style={dashed, gray!30},
|
||||
xmin=-5, % start the diagram at this x-coordinate
|
||||
xmax= 5, % end the diagram at this x-coordinate
|
||||
ymin= 0, % start the diagram at this y-coordinate
|
||||
ymax= 3, % end the diagram at this y-coordinate
|
||||
axis background/.style={fill=white},
|
||||
xlabel=$x$,
|
||||
ylabel=$y$,
|
||||
tick align=outside,
|
||||
minor tick num=-3,
|
||||
enlargelimits=true,
|
||||
tension=0.08]
|
||||
\addplot[domain=-5:-2, thick,samples=50, red] {1};
|
||||
\addplot[domain=-1:3, thick,samples=50, green] {1.5};
|
||||
\addplot[domain=3:5, thick,samples=50, blue, densely dotted] {3};
|
||||
\addplot[black, mark = *, nodes near coords=$P$,every node near coord/.style={anchor=225}] coordinates {(2, 2)};
|
||||
|
||||
\addplot[blue, mark = *, nodes near coords=$P_{h,\text{min}}$,every node near coord/.style={anchor=225}] coordinates {(3, 3)};
|
||||
\addplot[green, mark = x, nodes near coords=$P_{g,\text{min}}$,every node near coord/.style={anchor=120}] coordinates {(2, 1.5)};
|
||||
\addplot[red, mark = *, nodes near coords=$P_{f,\text{min}}$,every node near coord/.style={anchor=225}] coordinates {(-2, 1)};
|
||||
|
||||
\draw[thick, dashed] (axis cs:2,1.5) -- (axis cs:2,2);
|
||||
\draw[thick, dashed] (axis cs:2,2) -- (axis cs:-2,1);
|
||||
\draw[thick, dashed] (axis cs:2,2) -- (axis cs:3,3);
|
||||
\addlegendentry{$f(x)=1, D = [-5,-2]$}
|
||||
\addlegendentry{$g(x)=1.5, D = [-1,3]$}
|
||||
\addlegendentry{$h(x)=3, D = [3,5]$}
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\caption{Three constant functions and their points with minimal distance}
|
||||
\label{fig:constant-min-distance-closed-intervall}
|
||||
\end{figure}
|
||||
|
||||
The point with minimum distance can be found by:
|
||||
\[\underset{x\in\mdr}{\arg \min d_{P,f}(x)} = \begin{cases}
|
||||
S_0(f,P) &\text{if } S_0(f,P) \cap [a,b] \neq \emptyset \\
|
||||
\Set{a} &\text{if } S_0(f,P) \ni x_P < a\\
|
||||
\Set{b} &\text{if } S_0(f,P) \ni x_P > b
|
||||
\end{cases}\]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue