mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-19 11:38:05 +02:00
added plot for cubic functions; some restructuring
This commit is contained in:
parent
22f18e4f15
commit
d06eb991ef
2 changed files with 111 additions and 46 deletions
|
@ -11,25 +11,22 @@ def euclideanDist(p1, p2):
|
|||
from math import sqrt
|
||||
return sqrt((p1.x-p2.x)**2 + (p1.y-p2.y)**2)
|
||||
|
||||
def getMinDist(y, precision=0.001, startX=0, endX=3):
|
||||
"""Get x of point on (x,x^2) that has minimal distance to given Point."""
|
||||
def getMinDist(p1, precision=0.001, startX=0, endX=3):
|
||||
"""Get x of point on (x,x^2) that has minimal distance to given Point p."""
|
||||
minDist = -1
|
||||
p1 = Point(0, y)
|
||||
for x in numpy.arange(startX, endX, precision):
|
||||
p2 = Point(x, x**2)
|
||||
dist = euclideanDist(p1, p2)
|
||||
if minDist == -1 or dist < minDist:
|
||||
minDist = dist
|
||||
#print(dist)
|
||||
else:
|
||||
if abs(i-minDist) <0.005:
|
||||
print("x: %s" % str(x))
|
||||
break
|
||||
return minDist
|
||||
|
||||
for i in numpy.arange(0, 3, 0.01):
|
||||
minDist = getMinDist(i)
|
||||
"""for i in numpy.arange(0, 3, 0.01):
|
||||
minDist = getMinDist(Point(0, i))
|
||||
if abs(i-minDist) < 0.005:
|
||||
print(i, minDist)
|
||||
print(i, minDist)"""
|
||||
|
||||
print(getMinDist(Point(0,4.25), precision=0.001, startX=0, endX=3))
|
||||
#print(euclideanDist(Point(0,5),Point(2, 2**2)))
|
||||
|
||||
#print(getMinDist(5, 0.00001, 2, 3))
|
||||
|
|
|
@ -86,15 +86,23 @@ But minimizing $d_{P,f}$ is the same as minimizing $d_{P,f}^2$:
|
|||
&= x_p^2 - 2x_p x + x^2 + y_p^2 - 2y_p f(x) + f(x)^2
|
||||
\end{align}
|
||||
|
||||
\todo[inline]{hat dieser Satz einen Namen? kann ich den irgendwo zitieren? Ich habe ihn aus \href{https://github.com/MartinThoma/LaTeX-examples/tree/master/documents/Analysis I}{meinem Analysis I Skript} (Satz 22.3).}
|
||||
\begin{theorem}[Minima of polynomial functions]\label{thm:minima-of-polynomials}
|
||||
Let $n \in \mathbb{N}, n \geq 2$, $f$ polynomial function of
|
||||
degree $n$, $x_0 \in \mathbb{R}$, \\
|
||||
$f'(x_0) = f''(x_0) = \dots = f^{(n-1)} (x_0) = 0$
|
||||
and $f^{(n)} > 0$.
|
||||
\todo[inline]{Hat dieser Satz einen Namen? Gibt es ein gutes Buch,
|
||||
aus dem ich den zitieren kann? Ich habe ihn aus \href{https://github.com/MartinThoma/LaTeX-examples/tree/master/documents/Analysis I}{meinem Analysis I Skript} (Satz 21.5).}
|
||||
\begin{theorem}\label{thm:required-extremum-property}
|
||||
Let $x_0$ be a relative extremum of $f$.
|
||||
|
||||
Then $x_0$ is a local minimum of $f$.
|
||||
Then: $f'(x_0) = 0$.
|
||||
\end{theorem}
|
||||
|
||||
%bzw. 22.3
|
||||
%\begin{theorem}[Minima of polynomial functions]\label{thm:minima-of-polynomials}
|
||||
% Let $n \in \mathbb{N}, n \geq 2$, $f$ polynomial function of
|
||||
% degree $n$, $x_0 \in \mathbb{R}$, \\
|
||||
% $f'(x_0) = f''(x_0) = \dots = f^{(n-1)} (x_0) = 0$
|
||||
% and $f^{(n)} > 0$.
|
||||
%
|
||||
% Then $x_0$ is a local minimum of $f$.
|
||||
%\end{theorem}
|
||||
\clearpage
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
@ -251,28 +259,36 @@ $b, c \in \mdr$ be a quadratic function.
|
|||
\end{figure}
|
||||
|
||||
\subsection{Calculate points with minimal distance}
|
||||
We use Theorem~\ref{thm:minima-of-polynomials}:\nobreak
|
||||
In this case, $d_{P,f}^2$ is polynomial of degree 4.
|
||||
We use Theorem~\ref{thm:required-extremum-property}:\nobreak
|
||||
\begin{align}
|
||||
0 &\stackrel{!}{=} (d_{P,f}^2)'\\
|
||||
&= -2 x_p + 2x -2y_p f'(x) + \left (f(x)^2 \right )'\label{eq:minimizingFirstDerivative}\\
|
||||
0 &\overset{!}{=} (d_{P,f}^2)'\\
|
||||
&= -2 x_p + 2x -2y_p f'(x) + \left (f(x)^2 \right )'\\
|
||||
&= -2 x_p + 2x -2y_p f'(x) + 2 f(x) \cdot f'(x) \rlap{\hspace*{3em}(chain rule)}\label{eq:minimizingFirstDerivative}\\
|
||||
&= -2 x_p + 2x -2y_p (2ax+b) + ((ax^2+bx+c)^2)'\\
|
||||
&= -2 x_p + 2x -2y_p \cdot 2ax-2 y_p b + (a^2 x^4+2 a b x^3+2 a c x^2+b^2 x^2+2 b c x+c^2)'\\
|
||||
&= -2 x_p + 2x -4y_p ax-2 y_p b + (4a^2 x^3 + 6 ab x^2 + 4acx + 2b^2 x + 2bc)\\
|
||||
&= 4a^2 x^3 + 6 ab x^2 + 2(1 -2y_p a+ 2ac + b^2)x +2(bc-by_p-x_p)\\
|
||||
0 &\stackrel{!}{=}(d_{P,f}^2)''\\
|
||||
&= 12a^2 x^2 + 12abx + 2(1 -2y_p a+ 2ac + b^2)
|
||||
&= 4a^2 x^3 + 6 ab x^2 + 2(1 -2y_p a+ 2ac + b^2)x +2(bc-by_p-x_p)
|
||||
\end{align}
|
||||
|
||||
%\begin{align}
|
||||
% 0 &\overset{!}{=}(d_{P,f}^2)''\\
|
||||
% &= 2 - 2y_p f''(x) + \left ( 2 f(x) \cdot f'(x) \right )' \rlap{\hspace*{3em}(Eq. \ref{eq:minimizingFirstDerivative})}\\
|
||||
% &= 2 - 2y_p f''(x) + 2 \cdot \left ( f'(x) \cdot f'(x) + f(x) \cdot f''(x) \right ) \rlap{\hspace*{3em}(product rule)}\\
|
||||
% &= 2 - 2y_p f''(x) + 2 \cdot \left ( f'(x)^2 + f(x) \cdot f''(x) \right )\\
|
||||
% &= 12a^2 x^2 + 12abx + 2(1 -2y_p a+ 2ac + b^2)
|
||||
%\end{align}
|
||||
|
||||
|
||||
This is an algebraic equation of degree 3.
|
||||
There can be up to 3 solutions in such an equation. An example is
|
||||
There can be up to 3 solutions in such an equation. Those solutions
|
||||
can be found with a closed formula.
|
||||
|
||||
\begin{align*}
|
||||
a &= 1 & b &= 0 & c &= 1 & x_p &= 0 & y_p &= 1
|
||||
\end{align*}
|
||||
\todo[inline]{Where are those closed formulas?}
|
||||
|
||||
So $f(x) = x^2 + 1$ and $P(0, 1)$.
|
||||
\begin{example}
|
||||
Let $a = 1, b = 0, c= 1, x_p= 0, y_p = 1$.
|
||||
So $f(x) = x^2 + 1$ and $P(0, 1)$.
|
||||
|
||||
\begin{align}
|
||||
0 &\stackrel{!}{=} 4 x^3 - 2x\\
|
||||
|
@ -281,6 +297,7 @@ So $f(x) = x^2 + 1$ and $P(0, 1)$.
|
|||
\end{align}
|
||||
|
||||
As you can easily verify, only $x_1$ is a minimum of $d_{P,f}$.
|
||||
\end{example}
|
||||
|
||||
|
||||
\subsection{Number of points with minimal distance}
|
||||
|
@ -288,10 +305,18 @@ It is obvious that a quadratic function can have two points with
|
|||
minimal distance.
|
||||
|
||||
For example, let $f(x) = x^2$ and $P = (0,5)$. Then $P_{f,1} \approx (2.179, 2.179^2)$
|
||||
has minimal distance to $P$, but also $P_{f,2}\approx (-2.179, 2.179^2)$.
|
||||
has minimal distance to $P$, but also $P_{f,2}\approx (-2.179, 2.179^2)$.\todo{exact example?}
|
||||
|
||||
Obviously, there cannot be more than three points with minimal distance.
|
||||
But can there be three points?
|
||||
As discussed before, there cannot be more than 3 points on the graph
|
||||
of $f$ next to $P$.
|
||||
|
||||
\todo[inline]{But can there be three points? O.b.d.A: $a > 0$.
|
||||
As $c$ is moves the curve only up and down, we can o.b.d.A assume
|
||||
that $c=0$.
|
||||
|
||||
$x=-\frac{b}{2a}$ is the minimum of $f$. If there are 3 points, this will
|
||||
be one of them. The other two ones are symmetric by an axis through
|
||||
$-\frac{b}{2a}$}
|
||||
|
||||
\begin{figure}[htp]
|
||||
\centering
|
||||
|
@ -328,7 +353,7 @@ But can there be three points?
|
|||
\caption{3 points with minimal distance?}
|
||||
\end{figure}
|
||||
|
||||
\todo[inline]{write this}
|
||||
\clearpage
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Cubic %
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
@ -337,29 +362,72 @@ Let $f(x) = a \cdot x^3 + b \cdot x^2 + c \cdot x + d$ be a cubic function
|
|||
with $a \in \mdr \setminus \Set{0}$ and
|
||||
$b, c, d \in \mdr$ be a function.
|
||||
|
||||
\subsection{Number of points with minimal distance}
|
||||
\begin{figure}[htp]
|
||||
\centering
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[
|
||||
legend pos=south east,
|
||||
axis x line=middle,
|
||||
axis y line=middle,
|
||||
grid = major,
|
||||
width=0.8\linewidth,
|
||||
height=8cm,
|
||||
grid style={dashed, gray!30},
|
||||
xmin=-3, % start the diagram at this x-coordinate
|
||||
xmax= 3, % end the diagram at this x-coordinate
|
||||
ymin=-3, % start the diagram at this y-coordinate
|
||||
ymax= 3, % end the diagram at this y-coordinate
|
||||
axis background/.style={fill=white},
|
||||
xlabel=$x$,
|
||||
ylabel=$y$,
|
||||
%xticklabels={-2,-1.6,...,7},
|
||||
%yticklabels={-8,-7,...,8},
|
||||
tick align=outside,
|
||||
minor tick num=-3,
|
||||
enlargelimits=true,
|
||||
tension=0.08]
|
||||
\addplot[domain=-3:3, thick,samples=50, red] {x*x*x};
|
||||
\addplot[domain=-3:3, thick,samples=50, green] {x*x*x+x*x};
|
||||
\addplot[domain=-3:3, thick,samples=50, blue] {x*x*x+2*x*x};
|
||||
\addplot[domain=-3:3, thick,samples=50, orange] {x*x*x+x};
|
||||
\addlegendentry{$f_1(x)=x^3$}
|
||||
\addlegendentry{$f_2(x)=x^3 + x^2$}
|
||||
\addlegendentry{$f_2(x)=x^3 + 2 \cdot x^2$}
|
||||
\addlegendentry{$f_1(x)=x^3 + x$}
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\caption{Cubic functions}
|
||||
\end{figure}
|
||||
|
||||
\todo[inline]{Write this}
|
||||
%
|
||||
%\subsection{Special points}
|
||||
%\todo[inline]{Write this}
|
||||
%
|
||||
%\subsection{Voronoi}
|
||||
%
|
||||
%For $b^2 \geq 3ac$
|
||||
%
|
||||
%\todo[inline]{Write this}
|
||||
|
||||
\subsection{Special points}
|
||||
\todo[inline]{Write this}
|
||||
|
||||
\subsection{Voronoi}
|
||||
|
||||
For $b^2 \geq 3ac$
|
||||
|
||||
\todo[inline]{Write this}
|
||||
\subsection{Calculate points with minimal distance}
|
||||
When you want to calculate points with minimal distance, you can
|
||||
take the same approach as in Equation \ref{eq:minimizingFirstDerivative}:
|
||||
|
||||
\begin{align}
|
||||
0 &\stackrel{!}{=} -2 x_p + 2x -2y_p(f(x))' + (f(x)^2)'\\
|
||||
\Leftrightarrow 0 &\stackrel{!}{=} 2 f(x) \cdot f'(x) - 2 y_p f'(x) + 2x - 2 x_p\\
|
||||
\Leftrightarrow 0 &\stackrel{!}{=} \underbrace{\left (2 f(x) - 2 y_p \right ) \cdot f'(x)}_{\text{Polynomial of degree 5}} + \underbrace{2x - 2 x_p}_{\text{:-(}}
|
||||
&= 2 f(x) \cdot f'(x) - 2 y_p f'(x) + 2x - 2 x_p\\
|
||||
&= \underbrace{\left (2 f(x) - 2 y_p \right ) \cdot f'(x)}_{\text{Polynomial of degree 5}} + \underbrace{2x - 2 x_p}_{\text{:-(}}
|
||||
\end{align}
|
||||
|
||||
\subsection{Number of points with minimal distance}
|
||||
As there is an algebraic equation of degree 5, there cannot be more
|
||||
than 5 solutions.
|
||||
\todo[inline]{Can there be 3, 4 or even 5 solutions? Examples!
|
||||
|
||||
After looking at function graphs of cubic functions, I'm pretty
|
||||
sure that there cannot be 4 or 5 solutions, no matter how you
|
||||
chose the cubic function $f$ and $P$.
|
||||
|
||||
\todo[inline]{Write this}
|
||||
I'm also pretty sure that there is no polynomial (no matter what degree)
|
||||
that has more than 3 solutions.}
|
||||
\end{document}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue