diff --git a/documents/GeoTopo/GeoTopo.pdf b/documents/GeoTopo/GeoTopo.pdf index bb7b161..671a133 100644 Binary files a/documents/GeoTopo/GeoTopo.pdf and b/documents/GeoTopo/GeoTopo.pdf differ diff --git a/documents/GeoTopo/Kapitel2.tex b/documents/GeoTopo/Kapitel2.tex index 32a4c2c..c51624b 100644 --- a/documents/GeoTopo/Kapitel2.tex +++ b/documents/GeoTopo/Kapitel2.tex @@ -196,11 +196,11 @@ U_i = \Set{(x_0: \dots : x_n) \in \praum^n(\mdr) | x_i \neq 0} &\rightarrow \mdr \begin{figure}[ht] \centering \subfloat[$F(x,y) = y^2 - x^3$]{ - \input{figures/3d-function-semicubical-parabola.tex} + \resizebox{0.45\linewidth}{!}{\input{figures/3d-function-semicubical-parabola.tex}} \label{fig:semicubical-parabola-2d} }% \subfloat[$y^2 - ax^3 = 0$]{ - \input{figures/2d-semicubical-parabola.tex} + \resizebox{0.45\linewidth}{!}{\input{figures/2d-semicubical-parabola.tex}} \label{fig:semicubical-parabola-3d} }% \label{Neilsche-Parabel} @@ -389,11 +389,11 @@ $\partial X$ ist eine Mannigfaltigkeit der Dimension $n-1$. \begin{figure} \centering \subfloat[Kugelkooridnaten]{ - \includegraphics[width=0.4\linewidth, keepaspectratio]{figures/spherical-coordinates.pdf} + \includegraphics[width=0.45\linewidth, keepaspectratio]{figures/spherical-coordinates.pdf} \label{fig:spherical-coordinates} }% \subfloat[Rotationskörper]{ - \input{figures/solid-of-revolution.tex} + \resizebox{0.45\linewidth}{!}{\input{figures/solid-of-revolution.tex}} \label{fig:solid-of-revolution} }% @@ -688,7 +688,7 @@ $\partial X$ ist eine Mannigfaltigkeit der Dimension $n-1$. \input{figures/topology-triangle-to-line.tex} \item \todo[inline]{Wozu dient das Beispiel?} - \input{figures/topology-2.tex} + \resizebox{0.9\linewidth}{!}{\input{figures/topology-2.tex}} \end{enumerate} \end{beispiel}