2
0
Fork 0
mirror of https://github.com/MartinThoma/LaTeX-examples.git synced 2025-04-19 11:38:05 +02:00

Vorlesung vom 23.01.2014 geTeXt

This commit is contained in:
Martin Thoma 2014-01-25 12:40:50 +01:00
parent 5ada0a42ed
commit ccfd6d71dd
2 changed files with 63 additions and 12 deletions

Binary file not shown.

View file

@ -2,6 +2,13 @@
% Mitschrieb vom 09.01.2014 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\chapter{Euklidische und nichteuklidische Geometrie}
\begin{definition}
Das Tripel $(X, d, G)$ heißt genau dann eine \textbf{Geometrie}\xindex{Geometrie},
wenn $(X, d)$ ein metrischer Raum und $\emptyset \neq G \subseteq \powerset{X}$
die Menge aller \textbf{Geraden}\xindex{Gerade} ist.
\end{definition}
\section{Axiome für die euklidische Ebene}
Axiome\xindex{Axiom} bilden die Grundbausteine jeder mathematischen Theorie. Eine
Sammlung aus Axiomen nennt man Axiomensystem\xindex{Axiomensystem}.
@ -758,8 +765,8 @@ $\overset{\text{Strahlensatz}}{\Rightarrow} \frac{a}{h_c} = \frac{c}{h_a} \right
die obere Halbebene bzw. Poincaré-Halbebene und $G = G_1 \cup G_2$
mit
\begin{align*}
G_1 &= \Set{g_1 \subseteq \mdh | \exists m \in \mdr, r \in \mdr_{>0}: g_1 \in \mdc: g_1 = \Set{|z-m|=r}}\\
G_2 &= \Set{g_2 \subseteq \mdh | \exists x \in \mdr: g_2 = \Set{z \in \mdc: \Re{z} = x} \cap \mdh}
G_1 &= \Set{g_1 \subseteq \mdh | \exists m \in \mdr, r \in \mdr_{>0}: g_1 = \Set{z \in \mdc : |z-m|=r}}\\
G_2 &= \Set{g_2 \subseteq \mdh | \exists x \in \mdr: g_2 = \Set{z \in \mdc: \Re(z) = x} \cap \mdh}
\end{align*}
Die Elemente von $\mdh$ heißen \textbf{hyperbolische Geraden}\xindex{Gerade!hyperbolische}
@ -781,7 +788,21 @@ $\overset{\text{Strahlensatz}}{\Rightarrow} \frac{a}{h_c} = \frac{c}{h_a} \right
Gegeben $z_1, z_2 \in \mdh$\\
\textbf{Existenz:} $\Re(z_1) = \Re(z_2)$
$\Rightarrow z_1$ und $z_2$ liegen auf
\[g = \Set{z \in \mdc | \Re(z) = \Re{z_1} \land \mdh}\]
\[g = \Set{z \in \mdc | \Re(z) = \Re(z_1) \land \mdh}\]
\begin{figure}[ht]
\centering
\subfloat[Fall 1]{
\input{figures/hyperbolische-geometrie-axiom-1-1.tex}
\label{fig:hyperbolische-geometrie-axiom-1-1}
}%
\subfloat[Fall1]{
\input{figures/hyperbolische-geometrie-axiom-1-2.tex}
\label{fig:hyperbolische-geometrie-axiom-1-2}
}%
\label{fig:hyperbolische-geometrie-axiom-1-0}
\caption{Zwei Punkte liegen in der hyperbolischen Geometrie immer auf genau einer Geraden}
\end{figure}
\item TODO
\item Siehe \cref{fig:hyperbolische-halbebene-axiom-5}.
\begin{figure}[htp]
@ -806,9 +827,9 @@ $\overset{\text{Strahlensatz}}{\Rightarrow} \frac{a}{h_c} = \frac{c}{h_a} \right
$\sigma \in \PSL_2(\mdr)$ mit $\sigma(x_0) = 0$,
$\sigma(x_1) = 1$, $\sigma(x_\infty) = \infty$
\item \label{prop:15.2d} $\SL_2(\mdr)$ wird von den Matrizen
\[\begin{pmatrix}\lambda & 0\\ 0 & \lambda^-1\end{pmatrix}, \lambda \in \mdr\]
\[\begin{pmatrix}1 & a\\ 0 & 1\end{pmatrix}, a \in \mdr\]
\[\begin{pmatrix}0 & 1\\-1 & 0\end{pmatrix}\]
\[\begin{pmatrix}\lambda & 0\\ 0 & \lambda^-1\end{pmatrix}, \lambda \in \mdr \;\;\;
\begin{pmatrix}1 & a\\ 0 & 1\end{pmatrix}, a \in \mdr\;\;\;
\begin{pmatrix}0 & 1\\-1 & 0\end{pmatrix}\]
erzeugt
\item $\PSL_2(\mdr)$ operiert auf $G$
\end{enumerate}
@ -816,23 +837,53 @@ $\overset{\text{Strahlensatz}}{\Rightarrow} \frac{a}{h_c} = \frac{c}{h_a} \right
\begin{beweis}\leavevmode
\begin{enumerate}[label=\alph*)]
\item Sei $z = x + iy \in \mdh$, d.~h. $y>0$ und
\item Sei $z = x + \iu y \in \mdh$, d.~h. $y>0$ und
$\sigma=\begin{pmatrix}a&b\\c&d\end{pmatrix} \in \SL_2(\mdr)$
\todo{Hier stimmt was nicht}
\begin{align}
\Rightarrow \sigma(z) &= \frac{ax + aiy + b}{cx + ciy +d}\\
&= \frac{ax + aiy + b}{cx + ciy +d} \cdot \frac{cx+d-iy}{cx+d-iy}\\
&= \frac{\Re(...) + i(aycx + ayd - ciyax - cyb)}{(cx+d)^2 + (cy)^2}\\
&= \frac{\Re(...) + i(ad-bc)y}{(cx+d)^2 + (cy)^2}
&\overset{\mathclap{\SL_2(\mdr)}}{=} \frac{\Re(...) + iy}{(cx+d)^2 + (cy)^2}
&= \frac{ax + aiy + b}{cx + c \iu y +d} \cdot \frac{cx+d-\iu y}{cx+d-\iu y}\\
&= \frac{\Re(...) + \iu (aycx + ayd - axy - yb)}{(cx+d)^2 + (cy)^2}\\
&= \frac{\Re(...) + \iu (ad-bc)y}{(cx+d)^2 + (cy)^2}\\
&\overset{\mathclap{\SL_2(\mdr)}}{=} \frac{\Re(...) + \iu y}{(cx+d)^2 + (cy)^2}
\end{align}
$\Rightarrow \Im(\sigma(z)) = \frac{y}{(cx+d)^2 + (cy)^2} > 0$
\item TODO b)
\item TODO c)
\item Ansatz: $\sigma = \begin{pmatrix}a & b\\c & d\end{pmatrix}$
$\sigma(x_0) = \frac{ax_0 + b}{c x_0 + d} \overset{!}{=} 0$
$\Rightarrow a x_0 + b = 0 \Rightarrow b = -a x_0$\\
$\sigma(x_\infty) = \infty \Rightarrow c x_\infty + d = 0 \Rightarrow d = - x_\infty$\\
$\sigma(x_1) = 1 \Rightarrow a x_1 + b = c x_1 + d$\\
$a (x_1 - x_0) = c (x_1 - x_\infty) \Rightarrow c = a \frac{x_1 - x_0}{x_1 - x_\infty}$\\
$\Rightarrow - a^2 \cdot x_\infty \frac{x_1 - x_0}{x_1 - x_\infty} + a^2 x_0 \frac{x_1 - x_0}{x_1 - x_\infty} = 1$\\
$\Rightarrow a^2 \frac{x_1 - x_0}{x_1 - x_\infty} (x_0 - x_\infty) = 1$
$\Rightarrow a^2 = \frac{x_1 - x_\infty}{(x_1 - x_\infty) (x_1 - x_0)}$
\item TODO d)
\item Es genügt die Aussage für Matrizen aus \cref{prop:15.2d}
zu zeigen.
\begin{itemize}
\item $\sigma = \begin{pmatrix}\lambda & 0\\ 0 & \lambda^{-1}\end{pmatrix}$, also $\sigma(z) = \lambda^2 z$
\begin{figure}[ht]
\centering
\subfloat[Fall 1]{
\input{figures/hyberbolische-geometrie-1.tex}
\label{fig:prop15.2.e.fall1.1}
}%
\subfloat[Fall 2 (Strahlensatz)]{
\input{figures/hyberbolische-geometrie-2.tex}
\label{fig:prop15.2.e.fall1.1}
}%
\label{fig:prop15.2.e.fall1.0}
\caption{TODO}
\end{figure}
\item Offensichtlich gilt die Aussage für $\sigma = \begin{pmatrix}1 & a\\0 & 1\end{pmatrix}$
\item Sei nun $\sigma = \begin{pmatrix}0 & 1\\-1 & 0\end{pmatrix}$, also $\sigma(z) = - \frac{1}{z}$
\begin{figure}[htp]
\centering
\input{figures/inversion-am-kreis.tex}
\caption{Inversion am Kreis}
\label{fig:inversion-am-kreis}
\end{figure}
\end{itemize}
\end{enumerate}
\end{beweis}