2
0
Fork 0
mirror of https://github.com/MartinThoma/LaTeX-examples.git synced 2025-04-19 11:38:05 +02:00

many changes; added proof

This commit is contained in:
Martin Thoma 2013-12-11 18:14:12 +01:00
parent e0bd5d3905
commit c752ff59b4
2 changed files with 105 additions and 86 deletions

View file

@ -64,7 +64,7 @@ This algorithm needs to know the signed current error. So you need to
be able to get the minimal distance of a point to a cubic spline combined with the direction (left or right).
As you need to get the signed error (and one steering direction might
be prefered), it is not only necessary to
get the minimal absolute distance, but also to get all points
get the minimal absolute distance, but might also help to get all points
on the spline with minimal distance.
In this paper I want to discuss how to find all points on a cubic
@ -77,37 +77,24 @@ distance of a point to a polynomial of degree 0, 1 and 2.
\section{Description of the Problem}
Let $f: \mdr \rightarrow \mdr$ be a polynomial function and $P \in \mdr^2$
be a point. Let $d_{P,f}: \mdr \rightarrow \mdr_0^+$
be the Euklidean distance $d_{P,f}$ of a point $P$ and a point $\left (x, f(x) \right )$:
be the Euklidean distance of a point $P$ and a point $\left (x, f(x) \right )$
on the graph of $f$:
\[d_{P,f} (x) := \sqrt{(x_P - x)^2 + (y_P - f(x))^2}\]
Now there is \todo{Should I proof this?}{finite set} $x_1, \dots, x_n$ such that
\[\forall \tilde x \in \mathbb{R} \setminus \{x_1, \dots, x_n\}: d_{P,f}(x_1) = \dots = d_{P,f}(x_n) < d_{P,f}(\tilde x)\]
Now there is finite set $M = \Set{x_1, \dots, x_n}$ of minima for given $f$ and $P$:
\[M = \Set{x \in \mdr | d_{P,f}(x) = \min_{\overline{x} \in \mdr} d_{P,f}(\overline{x})}\]
Essentially, you want to find the minima $x_1, \dots, x_n$ for given
$f$ and $P$.
But minimizing $d_{P,f}$ is the same as minimizing $d_{P,f}^2$:
\begin{align}
d_{P,f}(x)^2 &= \sqrt{(x_P - x)^2 + (y_P - f(x))^2}^2\\
&= x_p^2 - 2x_p x + x^2 + y_p^2 - 2y_p f(x) + f(x)^2
\end{align}
\todo[inline]{Hat dieser Satz einen Namen? Gibt es ein gutes Buch,
aus dem ich den zitieren kann? Ich habe ihn aus \href{https://github.com/MartinThoma/LaTeX-examples/tree/master/documents/Analysis I}{meinem Analysis I Skript} (Satz 21.5).}
\begin{theorem}\label{thm:required-extremum-property}
Let $x_0$ be a relative extremum of a differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$.
\begin{theorem}[Fermat's theorem about stationary points]\label{thm:required-extremum-property}
Let $x_0$ be a local extremum of a differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$.
Then: $f'(x_0) = 0$.
\end{theorem}
%bzw. 22.3
%\begin{theorem}[Minima of polynomial functions]\label{thm:minima-of-polynomials}
% Let $n \in \mathbb{N}, n \geq 2$, $f$ polynomial function of
% degree $n$, $x_0 \in \mathbb{R}$, \\
% $f'(x_0) = f''(x_0) = \dots = f^{(n-1)} (x_0) = 0$
% and $f^{(n)} > 0$.
%
% Then $x_0$ is a local minimum of $f$.
%\end{theorem}
\clearpage
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@ -140,7 +127,7 @@ Let $f(x) = c$ with $c \in \mdr$ be a constant function.
tension=0.08]
\addplot[domain=-5:5, thick,samples=50, red] {1};
\addplot[domain=-5:5, thick,samples=50, green] {2};
\addplot[domain=-5:5, thick,samples=50, blue] {3};
\addplot[domain=-5:5, thick,samples=50, blue, densely dotted] {3};
\addplot[black, mark = *, nodes near coords=$P$,every node near coord/.style={anchor=225}] coordinates {(2, 2)};
\addplot[blue, mark = *, nodes near coords=$P_{h,\text{min}}$,every node near coord/.style={anchor=225}] coordinates {(2, 3)};
\addplot[green, mark = x, nodes near coords=$P_{g,\text{min}}$,every node near coord/.style={anchor=120}] coordinates {(2, 2)};
@ -199,15 +186,16 @@ $t \in \mdr$ be a linear function.
\label{fig:linear-min-distance}
\end{figure}
Now you can drop a perpendicular $f_\bot$ through $P$ on $f(x)$. The slope of $f_\bot$
is $- \frac{1}{m}$. Now you can calculate $f_\bot$:\nobreak
Now you can drop a perpendicular $f_\bot$ through $P$ on $f(x)$. The
slope of $f_\bot$ is $- \frac{1}{m}$ and $t_\bot$ can be calculated:\nobreak
\begin{align}
f_\bot(x) &= - \frac{1}{m} \cdot x + t_\bot\\
\Rightarrow y_P &= - \frac{1}{m} \cdot x_P + t_\bot\\
\Leftrightarrow t_\bot &= y_P + \frac{1}{m} \cdot x_P
\end{align}
Now find the point $(x, f(x))$ where the perpendicular crosses the function:
The point $(x, f(x))$ where the perpendicular $f_\bot$ crosses $f$
is calculated this way:
\begin{align}
f(x) &= f_\bot(x)\\
\Leftrightarrow m \cdot x + t &= - \frac{1}{m} \cdot x + \left(y_P + \frac{1}{m} \cdot x_P \right)\\
@ -235,24 +223,22 @@ $b, c \in \mdr$ be a quadratic function.
width=0.8\linewidth,
height=8cm,
grid style={dashed, gray!30},
xmin=-3, % start the diagram at this x-coordinate
xmin=-3, % start the diagram at this x-coordinate
xmax= 3, % end the diagram at this x-coordinate
ymin=-0.25, % start the diagram at this y-coordinate
ymax= 9, % end the diagram at this y-coordinate
ymin=-0.25, % start the diagram at this y-coordinate
ymax= 9, % end the diagram at this y-coordinate
axis background/.style={fill=white},
xlabel=$x$,
ylabel=$y$,
%xticklabels={-2,-1.6,...,7},
%yticklabels={-8,-7,...,8},
tick align=outside,
minor tick num=-3,
enlargelimits=true,
tension=0.08]
\addplot[domain=-3:3, thick,samples=50, red] {0.5*x*x};
\addplot[domain=-3:3, thick,samples=50, green] {x*x};
\addplot[domain=-3:3, thick,samples=50, blue] {x*x + x};
\addplot[domain=-3:3, thick,samples=50, orange] {x*x + 2*x};
\addplot[domain=-3:3, thick,samples=50, black] {-x*x + 6};
\addplot[domain=-3:3, thick,samples=50, red] {0.5*x*x};
\addplot[domain=-3:3, thick,samples=50, green] { x*x};
\addplot[domain=-3:3, thick,samples=50, blue] { x*x + x};
\addplot[domain=-3:3, thick,samples=50, orange,dotted] { x*x + 2*x};
\addplot[domain=-3:3, thick,samples=50, black,dashed] {-x*x + 6};
\addlegendentry{$f_1(x)=\frac{1}{2}x^2$}
\addlegendentry{$f_2(x)=x^2$}
\addlegendentry{$f_3(x)=x^2+x$}
@ -277,15 +263,6 @@ We use Theorem~\ref{thm:required-extremum-property}:\nobreak
&= 2a^2 x^3 + 3 ab x^2 + (1 -2y_p a+ 2ac + b^2)x +(bc-by_p-x_p)\label{eq:quadratic-derivative-eq-0}
\end{align}
%\begin{align}
% 0 &\overset{!}{=}(d_{P,f}^2)''\\
% &= 2 - 2y_p f''(x) + \left ( 2 f(x) \cdot f'(x) \right )' \rlap{\hspace*{3em}(Eq. \ref{eq:minimizingFirstDerivative})}\\
% &= 2 - 2y_p f''(x) + 2 \cdot \left ( f'(x) \cdot f'(x) + f(x) \cdot f''(x) \right ) \rlap{\hspace*{3em}(product rule)}\\
% &= 2 - 2y_p f''(x) + 2 \cdot \left ( f'(x)^2 + f(x) \cdot f''(x) \right )\\
% &= 12a^2 x^2 + 12abx + 2(1 -2y_p a+ 2ac + b^2)
%\end{align}
This is an algebraic equation of degree 3.
There can be up to 3 solutions in such an equation. Those solutions
can be found with a closed formula.
@ -323,7 +300,11 @@ the minimum points in the original situation.
First of all, we move $f_0$ and $P_0$ by $\frac{b}{2a}$ in $x$ direction, so
\[f_1(x) = ax^2 - \frac{b^2}{4a} + c \;\;\;\text{ and }\;\;\; P_1 = \left (x_p+\frac{b}{2a},\;\; y_p \right )\]
Because:
Because:\footnote{The idea why you subtract $\frac{b}{2a}$ within
$f$ is that when you subtract something from $x$ before applying
$f$ it takes more time ($x$ needs to be bigger) to get to the same
situation. So to move the whole graph by $1$ to the left whe have
to add $+1$.}
\begin{align}
f(x-\nicefrac{b}{2a}) &= a (x-\nicefrac{b}{2a})^2 + b (x-\nicefrac{b}{2a}) + c\\
&= a (x^2 - \nicefrac{b}{a} x + \nicefrac{b^2}{4a^2}) + bx - \nicefrac{b^2}{2a} + c\\
@ -333,19 +314,19 @@ Because:
Then move $f_1$ and $P_1$ by $\frac{b^2}{4a}-c$ in $y$ direction. You get:
\[f_2(x) = ax^2\;\;\;\text{ and }\;\;\; P_2 = \left (x_p+\frac{b}{2a},\;\; y_p+\frac{b^2}{4a}-c \right )\]
\[f_2(x) = ax^2\;\;\;\text{ and }\;\;\; P_2 = \Big (\underbrace{x_P+\frac{b}{2a}}_{=: z},\;\; \underbrace{y_P+\frac{b^2}{4a}-c}_{=: w} \Big )\]
\textbf{Case 1:} As $f_2(x) = ax^2$ is symmetric to the $y$ axis, only points
$P = (0, w)$ could possilby have three minima.
Then compute:
\begin{align}
d_{P,{f_2}}(x) &= \sqrt{(x-x_{P})^2 + (f(x)-w)^2}\\
d_{P,{f_2}}(x) &= \sqrt{(x-0)^2 + (f_2(x)-w)^2}\\
&= \sqrt{x^2 + (ax^2-w)^2}\\
&= \sqrt{x^2 + a^2 x^4-2aw x^2+w^2}\\
&= \sqrt{a^2 x^4 + (1-2aw) x^2 + w^2}\\
&= \sqrt{\left (a^2 x^2 + \frac{1-2 a w}{2} \right )^2 + w^2 - (1-2 a w)^2}\\
&= \sqrt{\left (a^2 x^2 + \nicefrac{1}{2}-a w \right )^2 + (w^2 - (1-2 a w)^2)}\\
&= \sqrt{\left (a^2 x^2 + \nicefrac{1}{2}-a w \right )^2 + \big (w^2 - (1-2 a w)^2 \big)}
\end{align}
The term
@ -357,37 +338,24 @@ For all other points $P = (0, w)$, there are exactly two minima $x_{1,2} = \pm \
\textbf{Case 2:} $P = (z, w)$ is not on the symmetry axis, so $z \neq 0$. Then you compute:
\begin{align}
d_{P,{f_2}}(x) &= \sqrt{(x-z)^2 + (f(x)-w)^2}\\
&= \sqrt{(x^2 - 2zx + z^2) + ((ax^2)^2 - 2 awx^2 - w^2)}\\
&= \sqrt{a^2x^4 + (1- 2 aw)x^2 +(- 2z)x + z^2 - w^2}\\
0 &\stackrel{!}{=} d_{P, {f_2}}'(x) \\
&= \sqrt{(x^2 - 2zx + z^2) + ((ax^2)^2 - 2 awx^2 + w^2)}\\
&= \sqrt{a^2x^4 + (1- 2 aw)x^2 +(- 2z)x + z^2 + w^2}\\
0 &\stackrel{!}{=} \Big(\big(d_{P, {f_2}}(x)\big)^2\Big)' \\
&= 4a^2x^3 + 2(1- 2 aw)x +(- 2z)\\
&= 2 \left (2a^2x^2 + (1- 2 aw) \right )x - 2z\\
\Leftrightarrow z &\stackrel{!}{=} (2a^2x^2 + (1- 2 aw)) x\\
\Leftrightarrow 0 &\stackrel{!}{=} 2 a^2 x^3 + (1- 2 aw)x - z\label{line:solution-equation}
\Leftrightarrow 0 &\stackrel{!}{=} (2a^2x^2 + (1- 2 aw)) x - z\\
&= 2 a^2 x^3 + (1- 2 aw) x - z\\
\Leftrightarrow 0 &\stackrel{!}{=} x^3 + \underbrace{\frac{(1- 2 aw)}{2 a^2}}_{=: \alpha} x + \underbrace{\frac{-z}{2 a^2}}_{=: \beta}\\
&= x^3 + \alpha x + \beta\label{eq:simple-cubic-equation-for-quadratic-distance}
\end{align}
The solution for this equation was computated with Wolfram|Alpha.
I will only verify that the solution is correct. As there is only
one solution in this case, we only have to check this one.
The solution of Equation~\ref{eq:simple-cubic-equation-for-quadratic-distance}
is
\[t := \sqrt[3]{\sqrt{3 \cdot (4a^3 + 27 b^2)} -9b}\]
\[x = \frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} a }{t}\]
\begin{align}
t &:= \sqrt[3]{108a^4z + \sqrt{\num{11664}a^8 z^2 + 864 a^6 (1-2aw)^3}}\\
x &= \frac{t}{6 \sqrt[3]{2} a^2} - \frac{\sqrt[3]{2}(1-2aw)}{t}\\
\xRightarrow{x \text{ in line }\ref{line:solution-equation}} 0 &\stackrel{!}{=} 2a^2 \left ( \frac{t}{6 \sqrt[3]{2} a^2} - \frac{\sqrt[3]{2}(1-2aw)}{t} \right )^3 + (1-2aw) (\frac{t}{6 \sqrt[3]{2} a^2} - \frac{\sqrt[3]{2}(1-2aw)}{t}) - z\\
&= 2a^2 \underbrace{\left ( \frac{t}{6 \sqrt[3]{2} a^2} - \frac{\sqrt[3]{2}(1-2aw)}{t} \right )^3}_{=: \alpha} + \frac{t \cdot (1-2aw)}{6 \sqrt[3]{2} a^2} - \frac{\sqrt[3]{2} (1-2aw)^2}{t} - z
\end{align}
\todo[inline]{verify this solution}
Now compute $\alpha$. We know that $(a-b)^3 = a^3 - 3a^2 b +3ab^2 - b^3$:
\begin{align}
\alpha &= \left (\frac{t}{6 \sqrt[3]{2} a^2} \right )^3 - 3 \left (\frac{t}{6 \sqrt[3]{2} a^2} \right )^2 \left (\frac{\sqrt[3]{2}(1-2aw)}{t} \right ) + 3 \left (\frac{t}{6 \sqrt[3]{2} a^2} \right ) \left (\frac{\sqrt[3]{2}(1-2aw)}{t} \right )^2 - \left (\frac{\sqrt[3]{2}(1-2aw)}{t} \right )^3\\
&= \frac{t^3}{216 \cdot 2 \cdot a^6} - \frac{3t^2}{36 \sqrt[3]{4} a^4} \cdot \frac{\sqrt[3]{2}(1-2aw)}{t}
+ \frac{3t}{6 \sqrt[3]{2} a^2} \cdot \frac{\sqrt[3]{4} (1-2aw)^2}{t^2} - \frac{2 (1-2aw)^3}{t^3}\\
&= \frac{t^3}{432a^6} - \frac{t (1-2aw)}{12\sqrt[3]{2} a^4} + \frac{\sqrt[3]{2} (1-2aw)^2}{2ta^2} - \frac{2 (1-2aw)^3}{t^3}\\
&= \frac{t^3}{432a^6} + \frac{t^2 (2aw-1) + 6 \sqrt[3]{4} a^2 (1-2aw)^2}{12\sqrt[3]{2} a^4} - \frac{2 (1-2aw)^3}{t^3}\\
&= \frac{t^3- 2 (1-2aw)^3 \cdot 432a^6}{432a^6 t^3} + \frac{t^2 (2aw-1) + 6 \sqrt[3]{4} a^2 (1-2aw)^2}{12\sqrt[3]{2} a^4}\\
&= \frac{\sqrt[3]{2}(t^3- 2 (1-2aw)^3 \cdot 432a^6) + 36 a^2 t^3 (t^2 (2aw-1) + 6 \sqrt[3]{4} a^2 (1-2aw)^2)}{432 \sqrt[3]{2} a^6 t^3}\\
&= \frac{\sqrt[3]{2} t^3 - \sqrt[3]{2} (1-2aw)^3 \cdot 864a^6 + 36 a^2 t^3 (2awt^1-t^2 + 6 \sqrt[3]{4} a^2 (1-2aw)^2)}{6 \sqrt[3]{2} a^2 t \cdot 2a^2 \cdot 36 a^2 t^2}
\end{align}
\goodbreak
So the solution is given by
@ -421,15 +389,13 @@ $b, c, d \in \mdr$ be a function.
width=0.8\linewidth,
height=8cm,
grid style={dashed, gray!30},
xmin=-3, % start the diagram at this x-coordinate
xmax= 3, % end the diagram at this x-coordinate
ymin=-3, % start the diagram at this y-coordinate
ymax= 3, % end the diagram at this y-coordinate
xmin=-3, % start the diagram at this x-coordinate
xmax= 3, % end the diagram at this x-coordinate
ymin=-3, % start the diagram at this y-coordinate
ymax= 3, % end the diagram at this y-coordinate
axis background/.style={fill=white},
xlabel=$x$,
ylabel=$y$,
%xticklabels={-2,-1.6,...,7},
%yticklabels={-8,-7,...,8},
tick align=outside,
minor tick num=-3,
enlargelimits=true,
@ -458,6 +424,53 @@ $b, c, d \in \mdr$ be a function.
%\todo[inline]{Write this}
\subsection{Calculate points with minimal distance}
\begin{theorem}
There cannot be an algebraic solution to the problem of finding
a closest point $(x, f(x))$ to a given point $P$ when $f$ is
a polynomial function of degree $3$ or higher.
\end{theorem}
\begin{proof}
Let $g : \mdr \rightarrow \mdr$ be a polynomial of degree 5
\[g(x) = \tilde{a} x^5 + \tilde{b} x^4 + \tilde{c} x^3 + \tilde{d} x^2 + \tilde{e} x + \tilde{f}\]
with $\tilde{a} \in \mdr_{> 0},\; \tilde{b} \in \mdr \setminus \Set{0}$ and $\tilde{c}, \tilde{d}, \tilde{e}, \tilde{f} \in \mdr$.
Then, according to the Abel-Ruffini theorem, the equation
\[g(x) = 0\]
cannot be solved algebraicly.
%But lets define $a := \frac{\sqrt{\tilde{a}}}{3}$, $b := \frac{\tilde{b}}{5a}$,
%$c : = \frac{\frac{\tilde{c}}{2} - b^2}{2a}$, $d := \frac{\tilde{d}}{3} - bc + $
So you can find $a, b, c, d, x_p, y_p$ such that
\begin{align}
g(x) &= \underbrace{3 a^2}_{= \tilde{a}} x^5 + \underbrace{5ab}_{= \tilde{b}}x^4 + \underbrace{2(2ac + b^2 )}_{= \tilde{c}}x^3 &+& \underbrace{3(ad+bc-ay_p)}_{= \tilde{d}} x^2 \\
& &+& \underbrace{(2 b d+c^2+1-2 b y_p)}_{= \tilde{e}}x+\underbrace{c d-c y_p-x_p}_{= \tilde{f}}\\
&= f'(x) \cdot \left (f(x) - y_p \right ) + (x - x_p)\\
&= f(x) \cdot f'(x) - y_p f'(x) + x - x_p
\end{align}
And
\begin{align}
g(x) &\stackrel{!}{=}0\\
\Leftrightarrow 0 &\stackrel{!}{=} 2 f(x) \cdot f'(x) - 2 y_p f'(x) + 2x - 2 x_p\\
&= -2 x_p + 2x -2y_p(f(x))' + (f(x)^2)'\\
&= \left ((x-x_p)^2 \right )' + \left ( (f(x) - y_p)^2 \right )'\\
&= \left ((x-x_p)^2 + (f(x) - y_p)^2 \right )'\\
&= (d_{P,f}(x)^2)'
\end{align}
So the problem of finding a closest point $(x, f(x))$ on a
cubic function $f$ to $P$ is essentially the same as finding
a root of a polynomial function of degree 5. As this cannot
be solved algebraicly, the problem of finding such a point
can also not be solved algebraicly.$\qed$
\end{proof}
\todo[inline]{Start with theorem that this problem is not solvable
with analytics only. Use a general 5th degree function and show
that it can be mapped to a $f$ and $P$ instance.}
When you want to calculate points with minimal distance, you can
take the same approach as in Equation \ref{eq:minimizingFirstDerivative}:
@ -510,15 +523,13 @@ nicer situation, we can apply this approach for cubic functions.
width=0.8\linewidth,
height=8cm,
grid style={dashed, gray!30},
xmin=-3, % start the diagram at this x-coordinate
xmax= 3, % end the diagram at this x-coordinate
ymin=-3, % start the diagram at this y-coordinate
ymax= 3, % end the diagram at this y-coordinate
xmin=-3, % start the diagram at this x-coordinate
xmax= 3, % end the diagram at this x-coordinate
ymin=-3, % start the diagram at this y-coordinate
ymax= 3, % end the diagram at this y-coordinate
axis background/.style={fill=white},
xlabel=$x$,
ylabel=$y$,
%xticklabels={-2,-1.6,...,7},
%yticklabels={-8,-7,...,8},
tick align=outside,
minor tick num=-3,
enlargelimits=true,
@ -569,6 +580,14 @@ chose the cubic function $f$ and $P$.
I'm also pretty sure that there is no polynomial (no matter what degree)
that has more than 3 solutions.}
\todo[inline]{If there is no closed form solution, I want to
describe a numerical solution. I guess Newtons method might be good.}
\section{Newtons method}
\todo[inline]{When does Newtons method converge? How fast?
How to choose starting point?}
\section{Quadratic minimization}
\todo[inline]{TODO}
\section{Conclusion}
\todo[inline]{TODO}
\end{document}