mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-19 11:38:05 +02:00
added venn diagram of algebraic structures
This commit is contained in:
parent
932e56677d
commit
c2b25d095b
2 changed files with 165 additions and 0 deletions
31
tikz/venn-diagramm/Makefile
Normal file
31
tikz/venn-diagramm/Makefile
Normal file
|
@ -0,0 +1,31 @@
|
|||
SOURCE = venn-diagramm
|
||||
DELAY = 80
|
||||
DENSITY = 300
|
||||
WIDTH = 1024
|
||||
|
||||
make:
|
||||
pdflatex $(SOURCE).tex -output-format=pdf
|
||||
make clean
|
||||
|
||||
clean:
|
||||
rm -rf $(TARGET) *.class *.html *.log *.aux
|
||||
|
||||
gif:
|
||||
pdfcrop $(SOURCE).pdf
|
||||
convert -verbose -delay $(DELAY) -loop 0 -density $(DENSITY) $(SOURCE)-crop.pdf $(SOURCE).gif
|
||||
make clean
|
||||
|
||||
png:
|
||||
make
|
||||
make svg
|
||||
inkscape $(SOURCE).svg -w $(WIDTH) --export-png=$(SOURCE).png
|
||||
|
||||
transparentGif:
|
||||
convert $(SOURCE).pdf -transparent white result.gif
|
||||
make clean
|
||||
|
||||
svg:
|
||||
#inkscape $(SOURCE).pdf --export-plain-svg=$(SOURCE).svg
|
||||
pdf2svg $(SOURCE).pdf $(SOURCE).svg
|
||||
# Necessary, as pdf2svg does not always create valid svgs:
|
||||
inkscape $(SOURCE).svg --export-plain-svg=$(SOURCE).svg
|
134
tikz/venn-diagramm/venn-diagramm.tex
Normal file
134
tikz/venn-diagramm/venn-diagramm.tex
Normal file
|
@ -0,0 +1,134 @@
|
|||
\documentclass{article}
|
||||
\usepackage[pdftex,active,tightpage]{preview}
|
||||
\setlength\PreviewBorder{2mm}
|
||||
\usepackage{tikz}
|
||||
\usetikzlibrary{shapes,snakes,calc}
|
||||
\usepackage{amsmath,amssymb}
|
||||
\begin{document}
|
||||
\begin{preview}
|
||||
\begin{tikzpicture}[%
|
||||
auto,
|
||||
example/.style={
|
||||
rectangle,
|
||||
draw=blue,
|
||||
thick,
|
||||
fill=blue!20,
|
||||
text width=4.5em,
|
||||
align=center,
|
||||
rounded corners,
|
||||
minimum height=2em
|
||||
},
|
||||
algebraicName/.style={
|
||||
text width=7em,
|
||||
align=center,
|
||||
minimum height=2em
|
||||
},
|
||||
explanation/.style={
|
||||
text width=10em,
|
||||
align=left,
|
||||
minimum height=3em
|
||||
}
|
||||
]
|
||||
\draw[fill=yellow!20,yellow!20] (-1.85, 0.55) rectangle (13.4,-6.85);
|
||||
\draw[fill=black!20,black!20] ( 7.53,-1.40) rectangle (13.0,-6.45);
|
||||
\draw[fill=lime!20,lime!20] (-1.75, 0.45) rectangle (7.3,-6.75);
|
||||
\draw[fill=purple!20,purple!20] (-1.65,-1.40) rectangle (7.2,-6.65);
|
||||
\draw[fill=blue!20,blue!20] (-1.55,-3.55) rectangle (7.1,-6.55);
|
||||
\draw[fill=red!20,red!20] (-1.45,-4.65) rectangle (7.0,-6.45);
|
||||
\draw (0, 0) node[algebraicName] (A) {Gruppe}
|
||||
(2, 0) node[explanation] (B) {
|
||||
\begin{minipage}{0.90\textwidth}
|
||||
\tiny
|
||||
\begin{itemize}
|
||||
\itemsep -0.3em
|
||||
\item Assoziativit\"at
|
||||
\item Neutrales Element
|
||||
\item Inverse Elemente
|
||||
\end{itemize}
|
||||
\end{minipage}
|
||||
}
|
||||
(0,-2) node[algebraicName] (C) {abelsche Gruppe}
|
||||
(2,-2) node[explanation] (X) {
|
||||
\begin{minipage}{150\textwidth}
|
||||
\tiny
|
||||
\begin{itemize}
|
||||
\itemsep -0.3em
|
||||
\item kommutativ
|
||||
\end{itemize}
|
||||
\end{minipage}
|
||||
}
|
||||
(2, -3) node[example, draw=purple, fill=purple!15] (D) {$(\mathbb{Z}, +)$}
|
||||
(4, -3) node[example, draw=purple, fill=purple!15] (E) {$(\mathbb{Q} \setminus \{0\}, \cdot)$}
|
||||
|
||||
(10,-6) node[example, draw=black, fill=black!15] (F) {$(\mathbb{N}_0, +)$}
|
||||
(12,-6) node[example, draw=black, fill=black!15] (G) {$(\mathbb{N}_0, \cdot)$}
|
||||
|
||||
(0,-4) node[algebraicName] (H) {Ring}
|
||||
(2,-4.1) node[explanation] (X) {
|
||||
\begin{minipage}{150\textwidth}
|
||||
\tiny
|
||||
\begin{itemize}
|
||||
\itemsep -0.3em
|
||||
\item Zwei Verkn\"upfungen
|
||||
\item $(R, +)$ ist abelsche Gruppe
|
||||
\item $(R, \cdot)$ ist Halbgruppe
|
||||
\item Distributivgesetze
|
||||
\end{itemize}
|
||||
\end{minipage}
|
||||
}
|
||||
(6,-4) node[example, draw=blue, fill=blue!15] (I) {$(\mathbb{Z}, +, \cdot)$}
|
||||
|
||||
(0,-5) node[algebraicName] (J) {K\"orper}
|
||||
(2,-5) node[explanation] (X) {
|
||||
\begin{minipage}{150\textwidth}
|
||||
\tiny
|
||||
\begin{itemize}
|
||||
\itemsep -0.3em
|
||||
\item $(\mathbb{K} \setminus \{0\}, \cdot)$ ist abelsche Gruppe
|
||||
\end{itemize}
|
||||
\end{minipage}
|
||||
}
|
||||
(0,-6) node[example, draw=red, fill=red!15] (K) {$(\mathbb{Q}, +, \cdot)$}
|
||||
(2,-6) node[example, draw=red, fill=red!15] (L) {$(\mathbb{R}, +, \cdot)$}
|
||||
(4,-6) node[example, draw=red, fill=red!15] (M) {$(\mathbb{C}, +, \cdot)$}
|
||||
(6,-6) node[example, draw=red, fill=red!15] (N) {$\mathbb{Z} / p \mathbb{Z}$}
|
||||
|
||||
|
||||
(9, 0) node[algebraicName] (O) {Halbgruppe}
|
||||
(12,0) node[explanation] (X) {
|
||||
\begin{minipage}{150\textwidth}
|
||||
\tiny
|
||||
\begin{itemize}
|
||||
\itemsep -0.3em
|
||||
\item Eine Verkn\"upfung
|
||||
\item Abgeschlossenheit
|
||||
\end{itemize}
|
||||
\end{minipage}
|
||||
}
|
||||
(12,-1) node[example, draw=yellow, fill=yellow!15] (P) {$(\emptyset, \emptyset)$}
|
||||
(9, -2) node[algebraicName] (Q) {kommutative Halbgruppe}
|
||||
(12,-2) node[explanation] (X) {
|
||||
\begin{minipage}{150\textwidth}
|
||||
\tiny
|
||||
\begin{itemize}
|
||||
\itemsep -0.3em
|
||||
\item kommutativ
|
||||
\end{itemize}
|
||||
\end{minipage}
|
||||
};
|
||||
|
||||
% Körper
|
||||
\draw[red,thick] ($(J.north west)+(-0.1,0.0)$) rectangle ($(N.south east)+(0.1,-0.1)$);
|
||||
% Ring
|
||||
\draw[blue, thick] ($(H.north west)+(-0.2,0.1)$) rectangle ($(N.south east)+(0.2,-0.2)$);
|
||||
% abelsche Gruppe
|
||||
\draw[purple, thick] ($(C.north west)+(-0.3,0.1)$) rectangle ($(N.south east)+(0.3,-0.3)$);
|
||||
% Gruppe
|
||||
\draw[lime, thick] ($(A.north west)+(-0.4,0.1)$) rectangle ($(N.south east)+(0.4,-0.4)$);
|
||||
% Halbgruppe
|
||||
\draw[yellow, thick] ($(A.north west)+(-0.5,0.2)$) rectangle ($(G.south east)+(0.5,-0.5)$);
|
||||
% Halbgruppe
|
||||
\draw[black, thick] ($(Q.north west)+(-0.1,0.1)$) rectangle ($(G.south east)+(0.1,-0.1)$);
|
||||
\end{tikzpicture}
|
||||
\end{preview}
|
||||
\end{document}
|
Loading…
Add table
Add a link
Reference in a new issue