2
0
Fork 0
mirror of https://github.com/MartinThoma/LaTeX-examples.git synced 2025-04-19 11:38:05 +02:00

added venn diagram of algebraic structures

This commit is contained in:
Martin Thoma 2012-08-14 14:31:52 +02:00
parent 932e56677d
commit c2b25d095b
2 changed files with 165 additions and 0 deletions

View file

@ -0,0 +1,31 @@
SOURCE = venn-diagramm
DELAY = 80
DENSITY = 300
WIDTH = 1024
make:
pdflatex $(SOURCE).tex -output-format=pdf
make clean
clean:
rm -rf $(TARGET) *.class *.html *.log *.aux
gif:
pdfcrop $(SOURCE).pdf
convert -verbose -delay $(DELAY) -loop 0 -density $(DENSITY) $(SOURCE)-crop.pdf $(SOURCE).gif
make clean
png:
make
make svg
inkscape $(SOURCE).svg -w $(WIDTH) --export-png=$(SOURCE).png
transparentGif:
convert $(SOURCE).pdf -transparent white result.gif
make clean
svg:
#inkscape $(SOURCE).pdf --export-plain-svg=$(SOURCE).svg
pdf2svg $(SOURCE).pdf $(SOURCE).svg
# Necessary, as pdf2svg does not always create valid svgs:
inkscape $(SOURCE).svg --export-plain-svg=$(SOURCE).svg

View file

@ -0,0 +1,134 @@
\documentclass{article}
\usepackage[pdftex,active,tightpage]{preview}
\setlength\PreviewBorder{2mm}
\usepackage{tikz}
\usetikzlibrary{shapes,snakes,calc}
\usepackage{amsmath,amssymb}
\begin{document}
\begin{preview}
\begin{tikzpicture}[%
auto,
example/.style={
rectangle,
draw=blue,
thick,
fill=blue!20,
text width=4.5em,
align=center,
rounded corners,
minimum height=2em
},
algebraicName/.style={
text width=7em,
align=center,
minimum height=2em
},
explanation/.style={
text width=10em,
align=left,
minimum height=3em
}
]
\draw[fill=yellow!20,yellow!20] (-1.85, 0.55) rectangle (13.4,-6.85);
\draw[fill=black!20,black!20] ( 7.53,-1.40) rectangle (13.0,-6.45);
\draw[fill=lime!20,lime!20] (-1.75, 0.45) rectangle (7.3,-6.75);
\draw[fill=purple!20,purple!20] (-1.65,-1.40) rectangle (7.2,-6.65);
\draw[fill=blue!20,blue!20] (-1.55,-3.55) rectangle (7.1,-6.55);
\draw[fill=red!20,red!20] (-1.45,-4.65) rectangle (7.0,-6.45);
\draw (0, 0) node[algebraicName] (A) {Gruppe}
(2, 0) node[explanation] (B) {
\begin{minipage}{0.90\textwidth}
\tiny
\begin{itemize}
\itemsep -0.3em
\item Assoziativit\"at
\item Neutrales Element
\item Inverse Elemente
\end{itemize}
\end{minipage}
}
(0,-2) node[algebraicName] (C) {abelsche Gruppe}
(2,-2) node[explanation] (X) {
\begin{minipage}{150\textwidth}
\tiny
\begin{itemize}
\itemsep -0.3em
\item kommutativ
\end{itemize}
\end{minipage}
}
(2, -3) node[example, draw=purple, fill=purple!15] (D) {$(\mathbb{Z}, +)$}
(4, -3) node[example, draw=purple, fill=purple!15] (E) {$(\mathbb{Q} \setminus \{0\}, \cdot)$}
(10,-6) node[example, draw=black, fill=black!15] (F) {$(\mathbb{N}_0, +)$}
(12,-6) node[example, draw=black, fill=black!15] (G) {$(\mathbb{N}_0, \cdot)$}
(0,-4) node[algebraicName] (H) {Ring}
(2,-4.1) node[explanation] (X) {
\begin{minipage}{150\textwidth}
\tiny
\begin{itemize}
\itemsep -0.3em
\item Zwei Verkn\"upfungen
\item $(R, +)$ ist abelsche Gruppe
\item $(R, \cdot)$ ist Halbgruppe
\item Distributivgesetze
\end{itemize}
\end{minipage}
}
(6,-4) node[example, draw=blue, fill=blue!15] (I) {$(\mathbb{Z}, +, \cdot)$}
(0,-5) node[algebraicName] (J) {K\"orper}
(2,-5) node[explanation] (X) {
\begin{minipage}{150\textwidth}
\tiny
\begin{itemize}
\itemsep -0.3em
\item $(\mathbb{K} \setminus \{0\}, \cdot)$ ist abelsche Gruppe
\end{itemize}
\end{minipage}
}
(0,-6) node[example, draw=red, fill=red!15] (K) {$(\mathbb{Q}, +, \cdot)$}
(2,-6) node[example, draw=red, fill=red!15] (L) {$(\mathbb{R}, +, \cdot)$}
(4,-6) node[example, draw=red, fill=red!15] (M) {$(\mathbb{C}, +, \cdot)$}
(6,-6) node[example, draw=red, fill=red!15] (N) {$\mathbb{Z} / p \mathbb{Z}$}
(9, 0) node[algebraicName] (O) {Halbgruppe}
(12,0) node[explanation] (X) {
\begin{minipage}{150\textwidth}
\tiny
\begin{itemize}
\itemsep -0.3em
\item Eine Verkn\"upfung
\item Abgeschlossenheit
\end{itemize}
\end{minipage}
}
(12,-1) node[example, draw=yellow, fill=yellow!15] (P) {$(\emptyset, \emptyset)$}
(9, -2) node[algebraicName] (Q) {kommutative Halbgruppe}
(12,-2) node[explanation] (X) {
\begin{minipage}{150\textwidth}
\tiny
\begin{itemize}
\itemsep -0.3em
\item kommutativ
\end{itemize}
\end{minipage}
};
% Körper
\draw[red,thick] ($(J.north west)+(-0.1,0.0)$) rectangle ($(N.south east)+(0.1,-0.1)$);
% Ring
\draw[blue, thick] ($(H.north west)+(-0.2,0.1)$) rectangle ($(N.south east)+(0.2,-0.2)$);
% abelsche Gruppe
\draw[purple, thick] ($(C.north west)+(-0.3,0.1)$) rectangle ($(N.south east)+(0.3,-0.3)$);
% Gruppe
\draw[lime, thick] ($(A.north west)+(-0.4,0.1)$) rectangle ($(N.south east)+(0.4,-0.4)$);
% Halbgruppe
\draw[yellow, thick] ($(A.north west)+(-0.5,0.2)$) rectangle ($(G.south east)+(0.5,-0.5)$);
% Halbgruppe
\draw[black, thick] ($(Q.north west)+(-0.1,0.1)$) rectangle ($(G.south east)+(0.1,-0.1)$);
\end{tikzpicture}
\end{preview}
\end{document}