mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-26 06:48:04 +02:00
Vorlesung vom 28.11.2013 digitalisiert
This commit is contained in:
parent
0d18b6b229
commit
bd5f65062d
35 changed files with 536 additions and 2 deletions
Binary file not shown.
|
@ -36,6 +36,7 @@
|
|||
\usetikzlibrary{3d,calc,intersections,er,arrows,positioning,shapes.misc,patterns,fadings,decorations.pathreplacing}
|
||||
\usepackage{tqft}
|
||||
\usepackage{cleveref} % has to be after hyperref, ntheorem, amsthm
|
||||
\usepackage{xspace} % for new commands; decides weather I want to insert a space after the command
|
||||
\usepackage{shortcuts}
|
||||
|
||||
\usepackage{fancyhdr}
|
||||
|
|
|
@ -718,5 +718,146 @@ $\partial X$ ist eine Mannigfaltigkeit der Dimension $n-1$.
|
|||
$\Rightarrow \chi(\Delta^n) = 1 \qed$
|
||||
\end{beweis}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Mitschrieb vom 28.11.2013 %
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\begin{definition}
|
||||
\begin{enumerate}[label=\alph*),ref=\theplaindefinition.\alph*]
|
||||
\item Ein 1D-Simplizialkomplex heißt \textbf{Graph}\xindex{Graph}.
|
||||
\item Ein Graph, der homöomorph zu $S^1$ ist, heißt \textbf{Kreis}\xindex{Kreis}.
|
||||
\item Ein zusammenhängender Graph heißt \textbf{Baum}\xindex{Baum},
|
||||
wenn er keinen Kreis enthält.
|
||||
\end{enumerate}
|
||||
\end{definition}
|
||||
|
||||
\begin{figure}[ht]
|
||||
\centering
|
||||
\subfloat[Dies wird häufig auch als Multigraph bezeichnet.]{
|
||||
\parbox{4cm}{\centering\input{figures/topology-graph-simple.tex}}
|
||||
\label{fig:topology-graph-simple}
|
||||
}%
|
||||
\subfloat[Planare Einbettung des Tetraeders]{
|
||||
\parbox{4cm}{\centering\input{figures/topology-graph-tetraeder.tex}}
|
||||
\label{fig:topology-graph-tetraeder}
|
||||
}
|
||||
|
||||
\subfloat[$K_5$]{
|
||||
\parbox{4cm}{\centering\input{figures/topology-graph-k-5.tex}}
|
||||
\label{fig:k-5}
|
||||
}%
|
||||
\subfloat[$K_{3,3}$]{
|
||||
\parbox{4cm}{\centering\input{figures/topology-graph-k-3-3.tex}}
|
||||
\label{fig:k-3-3}
|
||||
}%
|
||||
\label{fig:graphen-beispiele}
|
||||
\caption{Beispiele für Graphen}
|
||||
\end{figure}
|
||||
|
||||
\begin{korollar}
|
||||
Für jeden Baum $T$ gilt $\gamma(T) = 1$.
|
||||
\end{korollar}
|
||||
|
||||
\begin{beweis}
|
||||
Induktion über die Anzahl der Ecken.
|
||||
\end{beweis}
|
||||
|
||||
\begin{korollar}
|
||||
\begin{enumerate}[label=\alph*),ref=\theplaindefinition.\alph*]
|
||||
\item Jeder zusammenhängende Graph $\Gamma$ enthält einen
|
||||
Teilbaum $T$, der alle Ecken von $\Gamma$ enthält.%
|
||||
\footnote{$T$ wird \enquote{Spannbaum} genannt.}
|
||||
\item Ist $n = a_1(\Gamma) = a_1(T)$, so ist $\chi(\Gamma) = 1 - n$.
|
||||
\end{enumerate}
|
||||
\end{korollar}
|
||||
|
||||
\begin{beweis}\leavevmode
|
||||
\begin{enumerate}[label=\alph*),ref=\theplaindefinition.\alph*]
|
||||
\item Siehe \enquote{Algorithmus von Kruskal}.
|
||||
\item $\begin{aligned}[t]\chi(\Gamma) &= a_0(\Gamma) - a_1(\Gamma)\\
|
||||
&= a_0(\Gamma) - (n+a_1(T))\\
|
||||
&= a_0(T) - a_1(T) - n\\
|
||||
&= \chi(T) - n\\
|
||||
&= 1-n
|
||||
\end{aligned}$
|
||||
\end{enumerate}
|
||||
\end{beweis}
|
||||
|
||||
\begin{korollar}\label{kor:simplex-unterteilung}
|
||||
Sei $\Delta$ ein $n$-Simplex und $x \in \Delta^\circ \subseteq \mdr^n$.
|
||||
Sei $K$ der Simplizialkomplex, der aus $\Delta$ durch
|
||||
\enquote{Unterteilung} in $x$ entsteht. Dann ist $\chi(K) = \chi(\Delta) = 1$.
|
||||
\end{korollar}
|
||||
|
||||
\begin{figure}[ht]
|
||||
\centering
|
||||
\subfloat[$K$]{
|
||||
\parbox{4cm}{\centering\input{figures/topology-graph-tetraeder-area.tex}}
|
||||
\label{fig:topology-simplizial-complex-k}
|
||||
}%
|
||||
\subfloat[$\Delta$, das aus $K$ durch Unterteilung entsteht]{
|
||||
\parbox{4cm}{\centering\input{figures/topology-graph-tetraeder-area-2.tex}}
|
||||
\label{fig:topology-simplizial-complex-k-division}
|
||||
}%
|
||||
\label{fig:korollar-beispiel}
|
||||
\caption{Beispiel für Korollar~\ref{kor:simplex-unterteilung}.}
|
||||
\end{figure}
|
||||
|
||||
\begin{beweis}
|
||||
$\chi(K) = \chi(\Delta) - \underbrace{\underbrace{(-1)^n}_{n-\text{Simplex}} + \sum_{k=0}^n (-1)^k}_{(1+(-1))^{n+1}} = \chi(\Delta) \qed$
|
||||
\end{beweis}
|
||||
|
||||
\begin{satz}[Eulersche Polyederformel]\xindex{Eulersche Polyederformel}
|
||||
Sei $P$ ein konvexes Polyeder in $\mdr^3$, d.~h. $\partial P$ ist
|
||||
ein 2-dimensionaler Simplizialkomplex, sodass gilt:
|
||||
\[\forall x,y \in \partial P: [x,y] \subseteq P\]
|
||||
|
||||
Dann ist $\chi(\partial P) = 2$.
|
||||
\end{satz}
|
||||
|
||||
\begin{beweis}\leavevmode
|
||||
\begin{enumerate}[label=\arabic*)]
|
||||
\item Die Aussage ist richtig für den Tetraeder.
|
||||
\item \Obda{} sei $0 \in P$ und $P \subseteq \fB_1(0)$. Projeziere
|
||||
$0P$ von $0$ aus auf $\partial \fB_1(0) = S^2$.
|
||||
Erhalte Triangulierung von $S^2$.
|
||||
|
||||
\todo[inline]{Bild von rundem Wuerfel}
|
||||
\item Sind $P_1$ und $P_2$ konvexe Polygone und $T_1, T_2$
|
||||
die zugehörigen Triangulierungen von $S^2$, so gibt es
|
||||
eine eine Triangulierungen $T$, die sowohl um $T_1$ als
|
||||
auch um $T_2$ Verfeinerung ist.
|
||||
|
||||
\todo[inline]{Komische Zeichung}
|
||||
|
||||
Nach Korollar~\ref{kor:simplex-unterteilung} ist
|
||||
$\chi(\partial P_1) = \chi(T_1) = \chi(T) = \chi(T_2) = \chi(\partial P_2) = 2$.
|
||||
Weil \obda{} $P_2$ ein Tetraeder ist.
|
||||
\end{enumerate}
|
||||
\end{beweis}
|
||||
|
||||
\begin{korollar}
|
||||
Sei $K$ ein \todo{Warum in Klammern?}{(endlicher)} Simplizialkomplex mit Eckenmenge $V$
|
||||
und $<$ eine Totalordnung auf $V$.
|
||||
|
||||
Für jedes $n=0, \dots, d=\dim(K)$ sei $A_n(K)$ die Menge der
|
||||
$n$-Simplizes von $K$ und $C_n(K)$ der $\mdr$-Vektorraum mit
|
||||
Basis $A_n(K)$, d.~h.
|
||||
\[C_n(K) = \Set{\sum_{\sigma \in A_n(K)} c_\sigma \cdot \sigma | c_\sigma \in \mdr}\]
|
||||
|
||||
Sei $\sigma = \Delta(x_0, \dots, x_n) \in A_n(K)$, sodass
|
||||
$x_0 < x_1 < \dots < x_n$.
|
||||
|
||||
Für $i = 0, \dots, n$ sei $\partial_i \sigma := \Delta(x_0, \dots, \hat{x_i}, \dots, x_n)$
|
||||
die $i$-te Seite von $\sigma$. Sei $d_\sigma = d_n \sigma := \sum_{i=0} (-1)^i \partial_i \sigma \in C_{n-1} (K)$
|
||||
und $d: C_n(K) \rightarrow C_{n-1}(K)$ die dadurch definierte lineare
|
||||
Abbildung.
|
||||
|
||||
Dann gilt: $d_{n-1} \circ d_n = 0$
|
||||
|
||||
\todo[inline]{Skizze von Dreieck}
|
||||
|
||||
$d_2 \sigma = e_1 - e_2 + e_3 = c - b - (c-a) + b - a = 0$
|
||||
\end{korollar}
|
||||
|
||||
% Die Übungsaufgaben sollen ganz am Ende des Kapitels sein.
|
||||
\input{Kapitel2-UB}
|
||||
|
|
3
documents/GeoTopo/figures/todo.tex
Normal file
3
documents/GeoTopo/figures/todo.tex
Normal file
|
@ -0,0 +1,3 @@
|
|||
\begin{tikzpicture}
|
||||
\path (0,0) edge [bend angle=10,bend right] node[label=TODO] {} (-1,-1.5);
|
||||
\end{tikzpicture}
|
10
documents/GeoTopo/figures/topology-graph-k-3-3.tex
Normal file
10
documents/GeoTopo/figures/topology-graph-k-3-3.tex
Normal file
|
@ -0,0 +1,10 @@
|
|||
\begin{tikzpicture}
|
||||
\tikzstyle{point}=[circle,thick,draw=black,fill=black,inner sep=0pt,minimum width=4pt,minimum height=4pt]
|
||||
|
||||
\foreach \x in {0,1,2}
|
||||
\foreach \y in {0,1,2}{
|
||||
\node (a)[point] at (\y,0) {};
|
||||
\node (b)[point] at (\x,1) {};
|
||||
\draw (a) -- (b);
|
||||
}
|
||||
\end{tikzpicture}
|
17
documents/GeoTopo/figures/topology-graph-k-5.tex
Normal file
17
documents/GeoTopo/figures/topology-graph-k-5.tex
Normal file
|
@ -0,0 +1,17 @@
|
|||
\newcommand\n{5}
|
||||
\begin{tikzpicture}
|
||||
\tikzstyle{point}=[circle,thick,draw=black,fill=black,inner sep=0pt,minimum width=4pt,minimum height=4pt]
|
||||
|
||||
\begin{scope}[rotate=17]
|
||||
%the multiplication with floats is not possible. Thus I split the loop in two.
|
||||
\foreach \number in {1,...,\n}{
|
||||
\node[point] (N-\number) at ({\number*(360/\n)}:1.5cm) {};
|
||||
}
|
||||
|
||||
\foreach \number in {1,...,\n}{
|
||||
\foreach \y in {1,...,\n}{
|
||||
\draw (N-\number) -- (N-\y);
|
||||
}
|
||||
}
|
||||
\end{scope}
|
||||
\end{tikzpicture}
|
8
documents/GeoTopo/figures/topology-graph-simple.tex
Normal file
8
documents/GeoTopo/figures/topology-graph-simple.tex
Normal file
|
@ -0,0 +1,8 @@
|
|||
\begin{tikzpicture}
|
||||
\tikzstyle{point}=[circle,thick,draw=black,fill=black,inner sep=0pt,minimum width=4pt,minimum height=4pt]
|
||||
\node (a)[point] at (0,0) {};
|
||||
\node (b)[point] at (1,0) {};
|
||||
\path (a.center) edge [bend left] (b.center);
|
||||
\path (a.center) edge (b.center);
|
||||
\path (a.center) edge [bend right] (b.center);
|
||||
\end{tikzpicture}
|
|
@ -0,0 +1,15 @@
|
|||
\begin{tikzpicture}
|
||||
\tikzstyle{point}=[circle,thick,draw=black,fill=black,inner sep=0pt,minimum width=4pt,minimum height=4pt]
|
||||
\node (z)[point] at (0,0) {};
|
||||
\node (a)[point] at (90:1cm) {};
|
||||
\node (b)[point] at (210:1cm) {};
|
||||
\node (c)[point] at (330:1cm) {};
|
||||
\node (d)[point] at (10:1.5cm) {};
|
||||
\path (z.center) edge (a.center);
|
||||
\path (z.center) edge (b.center);
|
||||
\path (z.center) edge (c.center);
|
||||
\draw (a.center) -- (b.center) -- (c.center) -- cycle;
|
||||
|
||||
\draw (a.center) -- (d.center);
|
||||
\draw (c.center) -- (d.center);
|
||||
\end{tikzpicture}
|
15
documents/GeoTopo/figures/topology-graph-tetraeder-area.tex
Normal file
15
documents/GeoTopo/figures/topology-graph-tetraeder-area.tex
Normal file
|
@ -0,0 +1,15 @@
|
|||
\begin{tikzpicture}
|
||||
\tikzstyle{point}=[circle,thick,draw=black,fill=black,inner sep=0pt,minimum width=4pt,minimum height=4pt]
|
||||
\node (z)[point] at (0,0) {};
|
||||
\node (a)[point] at (90:1cm) {};
|
||||
\node (b)[point] at (210:1cm) {};
|
||||
\node (c)[point] at (330:1cm) {};
|
||||
\path (z.center) edge (a.center);
|
||||
\path (z.center) edge (b.center);
|
||||
\path (z.center) edge (c.center);
|
||||
\draw (a.center) -- (b.center) -- (c.center) -- cycle;
|
||||
|
||||
\draw[pattern=north west lines] (a.center) -- (b.center) -- (z.center) --cycle;
|
||||
\draw[pattern=dots] (b.center) -- (c.center) -- (z.center) --cycle;
|
||||
\draw[pattern=crosshatch] (a.center) -- (c.center) -- (z.center) --cycle;
|
||||
\end{tikzpicture}
|
11
documents/GeoTopo/figures/topology-graph-tetraeder.tex
Normal file
11
documents/GeoTopo/figures/topology-graph-tetraeder.tex
Normal file
|
@ -0,0 +1,11 @@
|
|||
\begin{tikzpicture}
|
||||
\tikzstyle{point}=[circle,thick,draw=black,fill=black,inner sep=0pt,minimum width=4pt,minimum height=4pt]
|
||||
\node (z)[point] at (0,0) {};
|
||||
\node (a)[point] at (90:1cm) {};
|
||||
\node (b)[point] at (210:1cm) {};
|
||||
\node (c)[point] at (330:1cm) {};
|
||||
\path (z.center) edge (a.center);
|
||||
\path (z.center) edge (b.center);
|
||||
\path (z.center) edge (c.center);
|
||||
\draw (a.center) -- (b.center) -- (c.center) -- cycle;
|
||||
\end{tikzpicture}
|
|
@ -68,7 +68,9 @@
|
|||
\def\GL{\ensuremath{\mathrm{GL}}}
|
||||
\newcommand\mapsfrom{\mathrel{\reflectbox{\ensuremath{\mapsto}}}}
|
||||
\newcommand\dcup{\mathbin{\dot{\cup}}}
|
||||
\newcommand\obda{o.~B.~d.~A.}
|
||||
\newcommand\Obda{o.~B.~d.~A.}
|
||||
|
||||
%%%Text %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\newcommand\obda{o.~B.~d.~A.\xspace}
|
||||
\newcommand\Obda{O.~B.~d.~A.\xspace}
|
||||
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue