mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-19 11:38:05 +02:00
Add sommerakademie
This commit is contained in:
parent
ddd08a2a45
commit
b5cb0e67f0
3 changed files with 73 additions and 0 deletions
8
presentations/sommerakademie-2016/Makefile
Normal file
8
presentations/sommerakademie-2016/Makefile
Normal file
|
@ -0,0 +1,8 @@
|
|||
SOURCE = sommerakademie-2016
|
||||
|
||||
make:
|
||||
pdflatex $(SOURCE).tex -output-format=pdf
|
||||
make clean
|
||||
|
||||
clean:
|
||||
rm -rf $(TARGET) *.class *.html *.log *.aux *.out *.glo *.glg *.gls *.ist *.xdy *.1 *.toc *.snm *.nav *.vrb *.fls *.fdb_latexmk *.pyg
|
BIN
presentations/sommerakademie-2016/sommerakademie-2016.pdf
Normal file
BIN
presentations/sommerakademie-2016/sommerakademie-2016.pdf
Normal file
Binary file not shown.
65
presentations/sommerakademie-2016/sommerakademie-2016.tex
Normal file
65
presentations/sommerakademie-2016/sommerakademie-2016.tex
Normal file
|
@ -0,0 +1,65 @@
|
|||
\documentclass{beamer}
|
||||
\usetheme{Frankfurt}
|
||||
\usecolortheme{default}
|
||||
\usepackage{hyperref}
|
||||
\usepackage[utf8]{inputenc} % this is needed for german umlauts
|
||||
\usepackage[english]{babel} % this is needed for german umlauts
|
||||
\usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
|
||||
\usepackage{booktabs}
|
||||
\usepackage{csquotes}
|
||||
\usepackage{siunitx}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\title{Semantische Segmentierung von medizinischen Instrumenten mit Deep Learning Techniken}
|
||||
\author{Martin Thoma}
|
||||
\date{August 2016}
|
||||
\subject{Computer Science}
|
||||
\setbeamertemplate{navigation symbols}{}
|
||||
|
||||
|
||||
\section{Deep Learning ist der Goldstandard für Bilderkennung}
|
||||
\begin{frame}[plain]{Wissenschaftliche Aussage}
|
||||
\begin{center}
|
||||
\only<1-2>{\textbf{Deep Learning ist der Goldstandard für Bilderkennung}}
|
||||
|
||||
\uncover<2>{Was ist \enquote{Deep Learning}?}
|
||||
|
||||
\only<3-4>{\textbf{Neuronale Netze sind der Goldstandard für Bilderkennung}}
|
||||
|
||||
\uncover<4>{Klassifikation? Semantische Segmentierung? Detektion? Lokalisierung?}
|
||||
|
||||
\only<5-6>{\textbf{Neuronale Netze sind der Goldstandard für Bildklassifikation}}
|
||||
|
||||
\uncover<6>{Fotos, medizinische Bilder, Luftbilder, Dokumente, \dots?}
|
||||
|
||||
\only<7-8>{\textbf{Neuronale Netze sind der Goldstandard für die Klassifikation von Fotos}\\}
|
||||
\only<8>{Goldstandard ist ein Schlagwort. Es wird einerseits zur Bezeichnung von Verfahren verwendet, die bislang unübertroffen sind.\\
|
||||
{\tiny Quelle: \href{https://de.wikipedia.org/w/index.php?title=Goldstandard_(Verfahren)&oldid=151270928}{de.wikipedia.org/w/index.php?title=Goldstandard\_(Verfahren)\&oldid=151270928}}}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[plain]{ImageNet / ILSVRC 2014}
|
||||
|
||||
ImageNet ist ein Datensatz mit
|
||||
\begin{itemize}
|
||||
\item \num{14197122} Bildern und
|
||||
\item \num{21841} Klassen (non-empty synsets)
|
||||
\end{itemize}
|
||||
|
||||
|
||||
|
||||
ILSVRC (Large Scale Visual Recognition Challenge) hatte 2014
|
||||
|
||||
\begin{itemize}
|
||||
\item \textbf{1000 Klassen}: abacus, abaya, academic gown, accordion,
|
||||
acorn, acorn squash, acoustic guitar, admiral, affenpinscher, Afghan hound,
|
||||
\dots
|
||||
\item
|
||||
\end{itemize}
|
||||
|
||||
Quellen: \href{http://image-net.org/about-stats}{image-net.org/about-stats},
|
||||
O. Russakovsky, J. Deng et al.ImageNet Large Scale Visual Recognition Challenge. IJCV, 2015
|
||||
\end{frame}
|
||||
|
||||
\end{document}
|
Loading…
Add table
Add a link
Reference in a new issue