added many hand-drawn images
|
@ -7,3 +7,4 @@ Datum | Uhrzeit
|
|||
05.12.2013 | 15:50 - 17:00
|
||||
12.12.2013 | 12:00 - 13:40, 16:23 - 18:22
|
||||
13.12.2013 | 13:10 - 13:47
|
||||
14.12.2013 | 13:00 - 14:45
|
||||
|
|
|
@ -7,8 +7,8 @@ Teilweise wurden die im folgenden aufgelisteten Bilder noch leicht
|
|||
modifiziert.
|
||||
|
||||
\begin{itemize}
|
||||
\item[Abb. \ref{fig:s2}] $S^2$: Tom Bombadil, \href{http://tex.stackexchange.com/a/42865/5645}{tex.stackexchange.com/a/42865/5645}
|
||||
\item[Abb. \ref{fig:cube}] Würfel: Jan Hlavacek, \href{http://tex.stackexchange.com/a/12069/5645}{tex.stackexchange.com/a/12069/5645}
|
||||
\item[Abb. \ref{fig:s2}] $S^2$: Tom Bombadil, \href{http://tex.stackexchange.com/a/42865/5645}{tex.stackexchange.com/a/42865}
|
||||
\item[Abb. \ref{fig:cube}] Würfel: Jan Hlavacek, \href{http://tex.stackexchange.com/a/12069/5645}{tex.stackexchange.com/a/12069}
|
||||
\item[Abb. \ref{fig:torus}] $T^2$: Jake, \href{http://tex.stackexchange.com/a/70979/5645}{tex.stackexchange.com/a/70979/5645}
|
||||
\item[Abb. \ref{fig:stereographic-projection}] Stereographische Projektion: \href{http://texample.net/tikz/examples/map-projections/}{texample.net/tikz/examples/map-projections}
|
||||
\item[Abb. \ref{fig:Knoten}] Knoten von Jim.belk aus der \enquote{\href{https://commons.wikimedia.org/wiki/Category:Blue_knots}{Blue knots}}-Serie:
|
||||
|
@ -21,4 +21,5 @@ modifiziert.
|
|||
\item[Abb. \ref{fig:reidemeister-zuege}] Reidemeister-Züge: YAMASHITA Makoto (\href{https://commons.wikimedia.org/wiki/File:Reidemeister_move_1.png}{1}, \href{https://commons.wikimedia.org/wiki/File:Reidemeister_move_1.png}{2}, \href{https://commons.wikimedia.org/wiki/File:Reidemeister_move_1.png}{3})
|
||||
\item[Abb. \ref{fig:treefoil-knot-three-colors}] Kleeblattknoten, 3-Färbung: Jim.belk, \href{https://commons.wikimedia.org/wiki/File:Tricoloring.png}{commons.wikimedia.org/wiki/File:Tricoloring.png}
|
||||
\item[Abb. \ref{fig:double-torus}] Doppeltorus: Oleg Alexandrov, \href{https://commons.wikimedia.org/wiki/File:Double_torus_illustration.png}{commons.wikimedia.org/wiki/File:Double\_torus\_illustration.png}
|
||||
\item[Abb. \ref{fig:ueberlappung-r1-spirale-s1}] Überlappung vom $S^1$ mit $\mdr$: \href{http://tex.stackexchange.com/users/22467/alex}{Alex}, \href{http://tex.stackexchange.com/a/149706/5645}{tex.stackexchange.com/a/149706}
|
||||
\end{itemize}
|
||||
|
|
|
@ -74,7 +74,7 @@
|
|||
nicht homöotop.
|
||||
\begin{figure}
|
||||
\centering
|
||||
\input{figures/todo.tex}
|
||||
\includegraphics[width=0.5\linewidth, keepaspectratio]{figures/todo/torus-three-paths.jpg}
|
||||
\caption{Torus mit drei Wegen}
|
||||
\label{fig:torus-three-paths}
|
||||
\end{figure}
|
||||
|
@ -143,11 +143,12 @@
|
|||
\begin{figure}[ht]
|
||||
\centering
|
||||
\subfloat[$\gamma_1 * (\gamma_2 * \gamma_3)$]{
|
||||
\input{figures/todo.tex}
|
||||
\includegraphics[width=0.5\linewidth, keepaspectratio]{figures/todo/zusammensetzen-von-wegen-nicht-assoziativ-1.jpg}
|
||||
\label{fig:assotiativitaet-von-wegen-a}
|
||||
}%
|
||||
}
|
||||
|
||||
\subfloat[$(\gamma_1 * \gamma_2) * \gamma_3$]{
|
||||
\input{figures/todo.tex}
|
||||
\includegraphics[width=0.5\linewidth, keepaspectratio]{figures/todo/zusammensetzen-von-wegen-nicht-assoziativ-2.jpg}
|
||||
\label{fig:assotiativitaet-von-wegen-b}
|
||||
}%
|
||||
\label{fig:assoziativitaet-von-wegen}
|
||||
|
@ -174,7 +175,7 @@
|
|||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\input{figures/todo.tex}
|
||||
\includegraphics[width=0.5\linewidth, keepaspectratio]{figures/todo/skizze-bemerkung-10-6.jpg}
|
||||
\caption{Situation aus Korollar~\ref{kor:bemerkung-10-6}}.
|
||||
\label{fig:situation-bemerkung-10-6}
|
||||
\end{figure}
|
||||
|
@ -237,7 +238,7 @@ Für einen Weg $\gamma$ sei $[\gamma]$ seine \textbf{Homotopieklasse}\xindex{Hom
|
|||
$[\gamma^k] \mapsto k$
|
||||
\item $\pi_1 (\mdr^2, 0) = \pi_1 (\mdr^2, x) = \Set{e}$ für jedes $x \in \mdr^2$
|
||||
\item $\pi_1 (\mdr^n, x) = \Set{e}$ für jedes $x \in \mdr^n$
|
||||
\item $G \subseteq \mdr^n$ \todo{hier fehlt was}heißt bzgl. $x \in G$,
|
||||
\item $G \subseteq \mdr^n$ heißt \textbf{sternförmig}\xindex{sternförmig} bzgl. $x \in G$,
|
||||
wenn für jedes $y \in G$ auch die Strecke $[x, y] \subseteq G$
|
||||
ist.
|
||||
|
||||
|
@ -247,12 +248,12 @@ Für einen Weg $\gamma$ sei $[\gamma]$ seine \textbf{Homotopieklasse}\xindex{Hom
|
|||
|
||||
\begin{figure}[ht]
|
||||
\centering
|
||||
\subfloat[TODO]{
|
||||
\subfloat[TODO: Was ist das hier?]{
|
||||
\input{figures/todo.tex}
|
||||
\label{fig:wege-zueinander-zusammenziehen}
|
||||
}\hspace{1em}%
|
||||
\subfloat[Sternförmiges Gebiet]{
|
||||
\input{figures/todo.tex}
|
||||
\includegraphics[width=0.5\linewidth, keepaspectratio]{figures/todo/sternfoermiges-gebiet.jpg}
|
||||
\label{fig:sternfoermiges-gebiet}
|
||||
}
|
||||
\label{fig:Gebiete}
|
||||
|
@ -462,6 +463,13 @@ Für einen Weg $\gamma$ sei $[\gamma]$ seine \textbf{Homotopieklasse}\xindex{Hom
|
|||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Mitschrieb vom 12.12.2013 %
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\section{Überlagerungen}
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=4cm, keepaspectratio]{figures/topology-r-spiral-covering-s.pdf}
|
||||
\caption{$\mdr \rightarrow S^1$,\\$t \mapsto (\cos 2 \pi t, \sin 2 \pi t)$}
|
||||
\label{fig:ueberlappung-r1-spirale-s1}
|
||||
\end{figure}
|
||||
\begin{definition}\xindex{Überlagerung}\label{def:12.1}%Definition 12.1 der Vorlesung
|
||||
Es seien $X, Y$ zusammenhängende topologische Räume und
|
||||
$p: Y \rightarrow X$ eine stetige, surjektive Abbildung.
|
||||
|
@ -474,17 +482,11 @@ Für einen Weg $\gamma$ sei $[\gamma]$ seine \textbf{Homotopieklasse}\xindex{Hom
|
|||
|
||||
\begin{beispiel}
|
||||
\begin{enumerate}[label=\arabic*)]
|
||||
\item
|
||||
\item siehe Abbildung~\ref{fig:ueberlappung-r1-spirale-s1}
|
||||
\item siehe Abbildung~\ref{fig:ueberlappung-kaestchen-torus}
|
||||
\begin{figure}
|
||||
\centering
|
||||
\input{figures/topology-r-spiral-covering-s.tex}
|
||||
\caption{$\mdr \rightarrow S^1$, $t \mapsto (\cos 2 \pi t, \sin 2 \pi t)$}
|
||||
\label{fig:ueberlappung-r1-spirale-s1}
|
||||
\end{figure}
|
||||
\item
|
||||
\begin{figure}
|
||||
\centering
|
||||
\input{figures/todo.tex}
|
||||
\includegraphics[width=0.8\linewidth, keepaspectratio]{figures/todo/ueberlappung-kaestchen-torus.jpg}
|
||||
\caption{$\mdr^2 \rightarrow T^2 = \mdr^2 / \mdz^2$}
|
||||
\label{fig:ueberlappung-kaestchen-torus}
|
||||
\end{figure}
|
||||
|
@ -493,9 +495,9 @@ Für einen Weg $\gamma$ sei $[\gamma]$ seine \textbf{Homotopieklasse}\xindex{Hom
|
|||
\item $S^1 \rightarrow S^1$, $z \mapsto z^2$
|
||||
\begin{figure}
|
||||
\centering
|
||||
\input{figures/todo.tex}
|
||||
\includegraphics[width=0.8\linewidth, keepaspectratio]{figures/todo/liftung-s-s.jpg}
|
||||
\caption{$t \mapsto (\cos 4 \pi t, \sin 4 \pi t)$}
|
||||
\label{fig:ueberlappung-kaestchen-torus}
|
||||
\label{fig:liftung-s1-s1}
|
||||
\end{figure}
|
||||
\end{enumerate}
|
||||
\end{beispiel}
|
||||
|
@ -597,7 +599,7 @@ Haben wir Häufungspunkt definiert?}
|
|||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\input{figures/todo.tex}
|
||||
\includegraphics[width=\linewidth, keepaspectratio]{figures/todo/liftung-torus-r.jpg}
|
||||
\caption{Beim liften eines Weges bleiben geschlossene Wege im allgemeinen nicht geschlossen}
|
||||
\label{fig:satz-seifert-van-kampen}
|
||||
\end{figure}
|
||||
|
@ -638,7 +640,7 @@ Haben wir Häufungspunkt definiert?}
|
|||
Analog: $Z \setminus T$ ist offen.
|
||||
\end{beweis}
|
||||
|
||||
\begin{satz}
|
||||
\begin{satz}\label{thm:ueberlagerung-weg-satz-12.6}
|
||||
Sei $p: Y \rightarrow X$ Überlagerung, $\gamma: I \rightarrow X$
|
||||
ein Weg, $y \in Y$ mit $p(y) = \gamma(0) =: x$.
|
||||
|
||||
|
@ -647,7 +649,13 @@ Haben wir Häufungspunkt definiert?}
|
|||
\end{satz}
|
||||
|
||||
\begin{beweis}
|
||||
Existenz: Siehe Skizze.
|
||||
Existenz: Siehe Skizze (Abbildung~\ref{fig:satz-12.6}).
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=0.6\linewidth, keepaspectratio]{figures/todo/skizze-1.jpg}
|
||||
\caption{Skizze für den Beweis von Satz~\ref{thm:ueberlagerung-weg-satz-12.6}}
|
||||
\label{fig:satz-12.6}
|
||||
\end{figure}
|
||||
\end{beweis}
|
||||
|
||||
% Die Übungsaufgaben sollen ganz am Ende des Kapitels sein.
|
||||
|
|
BIN
documents/GeoTopo/figures/todo/liftung-s-s.jpg
Normal file
After Width: | Height: | Size: 181 KiB |
BIN
documents/GeoTopo/figures/todo/liftung-torus-r.jpg
Normal file
After Width: | Height: | Size: 214 KiB |
BIN
documents/GeoTopo/figures/todo/skizze-1.jpg
Normal file
After Width: | Height: | Size: 120 KiB |
BIN
documents/GeoTopo/figures/todo/skizze-bemerkung-10-6.jpg
Normal file
After Width: | Height: | Size: 144 KiB |
BIN
documents/GeoTopo/figures/todo/sternfoermiges-gebiet.jpg
Normal file
After Width: | Height: | Size: 68 KiB |
BIN
documents/GeoTopo/figures/todo/torus-three-paths.jpg
Normal file
After Width: | Height: | Size: 483 KiB |
BIN
documents/GeoTopo/figures/todo/ueberlappung-kaestchen-torus.jpg
Normal file
After Width: | Height: | Size: 171 KiB |
BIN
documents/GeoTopo/figures/todo/wege-hin-zurueck.jpg
Normal file
After Width: | Height: | Size: 65 KiB |
BIN
documents/GeoTopo/figures/todo/wege-parametrisierung.jpg
Normal file
After Width: | Height: | Size: 89 KiB |
BIN
documents/GeoTopo/figures/todo/wege-skizze-1.jpg
Normal file
After Width: | Height: | Size: 64 KiB |
After Width: | Height: | Size: 80 KiB |
After Width: | Height: | Size: 77 KiB |
|
@ -1,57 +1,63 @@
|
|||
\begin{tikzpicture}
|
||||
\draw[->, thick] (7,5) -- (7, 2) node [midway, right] {$p$};
|
||||
\node at (1,5.5) {$\mathbb{R}$} ;
|
||||
\node at (6.4,0.7) {$\color{blue} S^1$};
|
||||
\node at (4.9,1.1){$x$};
|
||||
\begin{axis}[
|
||||
view={-30}{-45},
|
||||
axis lines=middle,
|
||||
zmax=60,
|
||||
height=8cm,
|
||||
xtick=\empty,
|
||||
ytick=\empty,
|
||||
ztick=\empty,
|
||||
enlarge y limits=true,
|
||||
enlarge x limits=true,
|
||||
]
|
||||
\documentclass{standalone}
|
||||
\usepackage{asymptote}
|
||||
|
||||
\addplot3+[->,ytick=\empty,yticklabel=\empty,
|
||||
mark=none,
|
||||
thick,
|
||||
black,
|
||||
domain=0:14.8*pi,
|
||||
samples=400,
|
||||
samples y=0,
|
||||
]
|
||||
({sin(deg(x))},{cos(deg(x)},{x+15});
|
||||
\addplot3+[ytick=\empty,yticklabel=\empty,
|
||||
mark=none,
|
||||
thick,
|
||||
dotted,
|
||||
black,
|
||||
domain=-1:0,
|
||||
samples=100,
|
||||
samples y=0,
|
||||
]
|
||||
({sin(deg(x))},{cos(deg(x)},{x+15});
|
||||
\begin{document}
|
||||
|
||||
\addplot3+[,ytick=\empty,yticklabel=\empty,
|
||||
mark=none,
|
||||
thick,
|
||||
blue,
|
||||
domain=0:14.7*pi,
|
||||
samples=400,
|
||||
samples y=0,
|
||||
]
|
||||
({sin(deg(x))},{cos(deg(x)},{0});
|
||||
\begin{asy}[width=10cm,height=10cm]
|
||||
import graph3;
|
||||
|
||||
%%%%%%%%%%%%% Point
|
||||
\addplot3+[
|
||||
mark options={color=black},
|
||||
mark=*
|
||||
]
|
||||
coordinates {({sin(deg(45)},{cos(deg(45))},0)};
|
||||
%%%%%%%%%%%%%
|
||||
usepackage("amsfonts");
|
||||
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
size3(200);
|
||||
|
||||
currentprojection=orthographic(4,6,3);
|
||||
|
||||
// parametrization
|
||||
real x(real t) {return cos(2pi*t);}
|
||||
real y(real t) {return sin(2pi*t);}
|
||||
real z(real t) {return 0.5*t;}
|
||||
real z0(real t) {return 0;}
|
||||
|
||||
scale(true);
|
||||
|
||||
// some parameters
|
||||
real delta = 0.01;
|
||||
real phix = 0.1;
|
||||
real phim = 6.7;
|
||||
|
||||
// spiral
|
||||
path3 spiral1 = graph(x,y,z,0.9,1,operator ..);
|
||||
draw(spiral1,dotted);
|
||||
path3 spiral2 = graph(x,y,z,1,phim,operator ..);
|
||||
draw(spiral2,Arrow3);
|
||||
|
||||
// blue circle
|
||||
draw(unitcircle3, blue);
|
||||
|
||||
// orange segments
|
||||
pen sp = orange+1;
|
||||
|
||||
draw(graph(x,y,z0,phix-delta,phix+delta,operator ..),sp);
|
||||
for(real i=1; i<phim; ++i) {
|
||||
draw(graph(x,y,z,i+phix-delta,i+phix+delta,operator ..),sp);
|
||||
}
|
||||
|
||||
// the dot x
|
||||
triple px = (x(phix),y(phix),0);
|
||||
dot(px);
|
||||
label("$x$",px,S);
|
||||
|
||||
// axes and labels
|
||||
xaxis3("",red,Arrow3);
|
||||
yaxis3("",red,Arrow3);
|
||||
zaxis3("",red,Arrow3);
|
||||
|
||||
label("$\mathbb{R}$",(1,-1,4));
|
||||
|
||||
draw((-1,1,4)--(-1,1,1),Arrow3);
|
||||
label("$p$",(-1,1,2.5),E);
|
||||
|
||||
label("$S^1$",(-1,1,0),W,blue);
|
||||
\end{asy}
|
||||
|
||||
\end{document}
|
||||
|
|