mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-19 11:38:05 +02:00
Bilder hinzugefügt; ein bisschen von der Vorlesung vom 24.10.2013 hinzugefügt
This commit is contained in:
parent
cc2be1fd37
commit
abfd62d765
7 changed files with 164 additions and 3 deletions
Binary file not shown.
|
@ -13,8 +13,11 @@
|
|||
\usepackage{csquotes}
|
||||
\usepackage{parskip}
|
||||
\usepackage{pst-solides3d}
|
||||
\usepackage[colorinlistoftodos]{todonotes}
|
||||
\usepackage{pgfplots}
|
||||
\usepackage{tikz}
|
||||
\usetikzlibrary{3d,calc,intersections,er,arrows,positioning}
|
||||
\usepackage{tkz-fct}
|
||||
\usetikzlibrary{3d,calc,intersections,er,arrows,positioning,shapes.misc}
|
||||
\newcommand{\inputTikZ}[2]{%
|
||||
\scalebox{#1}{\input{#2}}
|
||||
}
|
||||
|
|
|
@ -15,7 +15,7 @@
|
|||
%\end{figure}
|
||||
|
||||
\section{Topologische Räume}
|
||||
\begin{definition} \xindex{Topologischer Raum} \xindex{offen} \xindex{abgeschlossen}
|
||||
\begin{definition} \xindex{Raum!topologischer} \xindex{offen} \xindex{abgeschlossen}
|
||||
Ein \textbf{topologischer Raum} ist ein Paar $(X, \fT)$ bestehend
|
||||
aus einer Menge $X$ und $\fT \subseteq \powerset{X}$ mit
|
||||
folgenden Eigenschaften
|
||||
|
@ -111,8 +111,75 @@ Es gibt auch Mengen, die weder abgeschlossen, noch offen sind wie z.~B. $[0,1)$.
|
|||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Mitschrieb vom 24.10.2013 %
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\begin{definition}
|
||||
\begin{definition} \index{Produkttopologie}
|
||||
Seien $X_1, X_2$ topologische Räume.\\
|
||||
$U \subseteq X_1 \times X_2$ sei offen, wenn es zu jedem $x = (x_1, x_2) \in U$
|
||||
Umgebungen $U_i$ um $x_i$ mit $i=1,2$ gibt, sodass $U_1 \times U_2 \subseteq U$
|
||||
gilt.
|
||||
\[\fT = \Set{U \subseteq X_1 \times X_2 | U \text{ offen}}\]
|
||||
ist eine Topologie auf $X_1 \times X_2$. Sie heißt \textbf{Produkttopologie}.
|
||||
\[\fB = \Set{U_1 \times U_2 | U_i \text{ offen in } X_i, i=1,2}\]
|
||||
ist eine Basis von $\fT$.
|
||||
\end{definition}
|
||||
|
||||
\begin{beispiel}
|
||||
\begin{enumerate}[1)]
|
||||
\item $X_1 = X_2 = \mdr$ mit euklidischer Topologie.
|
||||
\item $X_1 = X_2 = \mdr$ mit Zariski-Topologie.
|
||||
$\fT$ Produkttopologie auf $\mdr^2$: $U_1 \times U_2$
|
||||
$\Rightarrow$ Die Produkttopologie auf $\mdr \times \mdr = \mdr^2$
|
||||
stimmt mit der euklidischen Topologie auf $\mdr^2$ überein.\\
|
||||
\todo{Bild einfügen}
|
||||
\end{enumerate}
|
||||
\end{beispiel}
|
||||
|
||||
\begin{definition} \index{Quotiententopologie}
|
||||
Sei $X$ topologischer Raum, $\sim$ eine Äquivalenzrelation auf $X$,
|
||||
$\overline{X} = X / \sim$ sei die Menge der Äquivalenzklassen,
|
||||
$\pi: x \rightarrow \overline{x}, \;\;\; x \mapsto [x]_\sim$,
|
||||
$U \subseteq \overline{X}$ heißt offen, wenn $\pi^{-1} (U) \subseteq X$
|
||||
offen ist. Dadurch wird eine Topologie auf $\overline{X}$ definiert.
|
||||
Diese Topologie heißt \textbf{Quotiententopologie}.
|
||||
\end{definition}
|
||||
|
||||
\begin{beispiel}
|
||||
$X = \mdr, a \sim b \Leftrightarrow a-b \in \mdz$
|
||||
|
||||
\input{figures/number-ray-circle-topology}
|
||||
|
||||
$0 \sim 1$, d.~h. $[0] = [1]$
|
||||
\begin{align*}
|
||||
(x_1, y_1) \sim (x_2, y_2) \Leftrightarrow &x_1 - x_2 \in \mdz\\
|
||||
&y_1 - y_2 \in \mdz
|
||||
\end{align*}
|
||||
$X / \sim$ ist ein Torus.
|
||||
\end{beispiel}
|
||||
|
||||
\begin{beispiel}
|
||||
\begin{align*}
|
||||
X= \mdr^{n-1} \setminus \Set{0}, x \sim y &\gdw \lambda \in \mdr^\times \text{ mit } y = \lambda x\\
|
||||
&\gdw x \text{ und } y \text{ liegen auf der gleichen Ursprungsgerade}
|
||||
\end{align*}
|
||||
\[\overline{X} = \mathbb{P}^n(\mdr)\]
|
||||
Also für $n=1$:
|
||||
|
||||
\input{figures/ursprungsgeraden}
|
||||
\end{beispiel}
|
||||
|
||||
\todo[inline]{TODO: Es fehlt noch ca. eine Seite}
|
||||
|
||||
\section{Metrische Räume}
|
||||
\begin{definition} \index{Metrik}
|
||||
Sei $X$ eine Menge. Eine Abbildung $d:X\times X \rightarrow \mdr$
|
||||
heißt \textbf{Metrik}, wenn gilt:
|
||||
\begin{enumerate}[(i)]
|
||||
\item $\forall x, y \in X: d(x,y) \geq 0$
|
||||
\item $d(x,y) = 0 \gdw x = y$
|
||||
\item $d(x,y) = d(y,x)$
|
||||
\item $d(x,z) \leq d(x,y) + d(x+z)$
|
||||
\end{enumerate}
|
||||
|
||||
Das Paar $(X, d)$ heißt ein \textbf{metrischer Raum} \index{Raum!metrischer}
|
||||
\end{definition}
|
||||
|
||||
\todo[inline]{TODO: Es fehlten noch ca. 2 Seiten}
|
||||
|
|
|
@ -48,6 +48,34 @@
|
|||
sort=subsetneq
|
||||
}
|
||||
|
||||
\newglossaryentry{R}
|
||||
{
|
||||
name={\ensuremath{\mdr}},
|
||||
description={Reele Zahlen},
|
||||
sort=KoerperR
|
||||
}
|
||||
|
||||
\newglossaryentry{Q}
|
||||
{
|
||||
name={\ensuremath{\mdq}},
|
||||
description={Rationale Zahlen},
|
||||
sort=KoerperQ
|
||||
}
|
||||
|
||||
\newglossaryentry{Z}
|
||||
{
|
||||
name={\ensuremath{\mdz}},
|
||||
description={Ganze Zahlen},
|
||||
sort=KoerperZ
|
||||
}
|
||||
|
||||
\newglossaryentry{Einheitengruppe}
|
||||
{
|
||||
name={\ensuremath{\mdr^\times}},
|
||||
description={Multiplikative Einheitengruppe von $\mdr$},
|
||||
sort=GruppeEinheiten
|
||||
}
|
||||
|
||||
% Setze den richtigen Namen für das Glossar
|
||||
\renewcommand*{\glossaryname}{\glossarName}
|
||||
\deftranslation{Glossary}{\glossarName}
|
||||
|
|
37
documents/GeoTopo/figures/number-ray-circle-topology.tex
Normal file
37
documents/GeoTopo/figures/number-ray-circle-topology.tex
Normal file
|
@ -0,0 +1,37 @@
|
|||
\tikzset{
|
||||
point/.style={
|
||||
thick,
|
||||
draw=gray,
|
||||
cross out,
|
||||
inner sep=0pt,
|
||||
minimum width=4pt,
|
||||
minimum height=4pt,
|
||||
},
|
||||
}
|
||||
\begin{tikzpicture}
|
||||
|
||||
\draw[->] (-1.5,0) -- (5.5,0) node [below] {$\mathbb{R}$};
|
||||
|
||||
\foreach \x in {-1,...,5}
|
||||
\draw (\x,0.1) -- (\x,-0.1) node [below] {\x};
|
||||
|
||||
\foreach \x in {-1,...,4} {
|
||||
\draw[red] (\x+0.6,0.01) -- (\x+0.6,-0.14) node [below] {};
|
||||
\draw[red] (\x+1.2,0.01) -- (\x+1.2,-0.14) node [below] {};
|
||||
\draw[red] (\x+0.6,-0.07) -- (\x+1.2,-0.07) node [below] {};
|
||||
}
|
||||
|
||||
\begin{scope}[shift={(0,-2)}]
|
||||
\draw[thick] (0cm,0cm) circle(1cm);
|
||||
\draw[thick, red] ([shift={(216:1cm)}]-0.0,0) arc (216:-72:1cm);
|
||||
\draw (0:1cm) node[point, label={[right]{$0$}}] {};
|
||||
\path node[point, blue, label={[blue,above]{$\overline{a}$}}] (posU) at (-252:1cm) {};
|
||||
\path node[label={[red,left]{$U$}}] at (30:1cm) {};
|
||||
\end{scope}
|
||||
\draw (3.7cm,0cm) node[point, blue, label={[blue,above]{$a$}}] (posA) {};
|
||||
\draw (0.7cm,0cm) node[point, blue, label={[blue,above]{$\pi^{-1}(u)$}}] {};
|
||||
\draw[dashed, blue, thick] plot [smooth] coordinates{(posU) (0.2,-0.8) (2.5,-1) (posA)};
|
||||
|
||||
\draw[blue, dashed, thick] (3.7cm,0cm) arc (0:180:1.5 and 0.5);
|
||||
|
||||
\end{tikzpicture}
|
25
documents/GeoTopo/figures/ursprungsgeraden.tex
Normal file
25
documents/GeoTopo/figures/ursprungsgeraden.tex
Normal file
|
@ -0,0 +1,25 @@
|
|||
\begin{tikzpicture}
|
||||
\begin{axis}[
|
||||
legend pos=south east,
|
||||
axis x line=middle,
|
||||
axis y line=middle,
|
||||
%grid = major,
|
||||
width=12cm,
|
||||
height=8cm,
|
||||
%grid style={dashed, gray!30},
|
||||
xmin=-4, % start the diagram at this x-coordinate
|
||||
xmax= 8, % end the diagram at this x-coordinate
|
||||
ymin=-4, % start the diagram at this y-coordinate
|
||||
ymax= 4, % end the diagram at this y-coordinate
|
||||
axis background/.style={fill=white},
|
||||
%xticklabels={-2,-1.6,...,2},
|
||||
%yticklabels={-8,-7,...,8},
|
||||
%tick align=outside,
|
||||
enlargelimits=true,
|
||||
tension=0.08]
|
||||
% plot the stirling-formulae
|
||||
\addplot[domain=-4:8, red, thick,samples=500] {0.5*x};
|
||||
\addplot[domain=-2:2, red, thick,samples=500] {2*x};
|
||||
\addplot[domain=-4:8, red, thick,samples=500] {-0.5*x};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
|
@ -16,4 +16,5 @@
|
|||
\newcommand{\powerset}[1]{\mathcal{P}(#1)}
|
||||
\def\mdr{\ensuremath{\mathbb{R}}}
|
||||
\def\mdq{\ensuremath{\mathbb{Q}}}
|
||||
\def\mdz{\ensuremath{\mathbb{Z}}}
|
||||
\def\gdw{\ensuremath{\Leftrightarrow}}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue