diff --git a/cheat-sheets/analysis/Analysis_Wichtige_Formeln.tex b/cheat-sheets/analysis/Analysis_Wichtige_Formeln.tex index 3d91bf8..e994c4f 100644 --- a/cheat-sheets/analysis/Analysis_Wichtige_Formeln.tex +++ b/cheat-sheets/analysis/Analysis_Wichtige_Formeln.tex @@ -45,10 +45,10 @@ \centering \begin{align*} -\cosh x = \frac {1}{2} (e^x + e^{-x}) &= \scriptstyle \sum_{n = 0}^{\infty} \frac {x^{2n}}{(2n)!} \\ +\cosh x = \frac {1}{2} (e^x + e^{-x}) &= \sum_{n = 0}^{\infty} \frac {x^{2n}}{(2n)!} \\ \sinh x = \frac {1}{2} (e^x - e^{-x}) &= \sum_{n = 0}^{\infty} \frac {x^{2n + 1}}{(2n + 1)!} \\ -e^x &= \sum_{n = 0}^{\infty} \frac {x^n}{n!} \\ -\sum_{n = 0}^{\infty} (-1)^n \frac {x^{n + 1}}{n + 1} &= \log (1+x) (x \in (-1,1)) \\ +e^x &= \sum_{n = 0}^{\infty} \frac {x^n}{n!} = \lim_{n\to\infty} \left (1+\frac{x}{n} \right )^n\\ +\sum_{n = 0}^{\infty} (-1)^n \frac {x^{n + 1}}{n + 1} &= \log (1+x) \; x \in (-1,1) \\ \sum_{n = 0}^{\infty} x^n &= \frac {1}{1 - x} (x \in (-1,1)) \\ 0,\bar{3} &= \sum_{n = 1}^{\infty} \frac {3}{(10)^n} \end{align*} diff --git a/documents/Analysis I/Analysis-I.tex b/documents/Analysis I/Analysis-I.tex index da0a701..1128490 100644 --- a/documents/Analysis I/Analysis-I.tex +++ b/documents/Analysis I/Analysis-I.tex @@ -745,7 +745,7 @@ Fall 2: $c<1 \folgt \frac{1}{c} > 1 \folgtnach{Fall 1} \underbrace{\sqrt[n]{\fra \begin{satz}[Satz und Definition von $e$] $$a_n := (1+\frac{1}{n})^n \ (n\in\MdN);\ b_n := \displaystyle\sum_{k=0}^n \frac{1}{k!} = 1 + 1 + \frac{1}{2} + \frac{1}{2\cdot3}+ \ldots + \frac{1}{n!}\ (n\in\MdN_0)$$ $(a_n)$ und $(b_n)$ sind konvergent und es gilt $\displaystyle\lim_{n\to\infty} a_n = \displaystyle\lim_{n\to\infty} b_n$.\\ -\textbf{Definition:} $e := \displaystyle\lim_{n\to\infty} (1+\frac{1}{n})^n$ heißt eulersche Zahl. ($2