mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-26 06:48:04 +02:00
Viele kleine Verbesserungen
This commit is contained in:
parent
bd5f65062d
commit
a210d07e76
9 changed files with 214 additions and 21 deletions
Binary file not shown.
|
@ -587,7 +587,7 @@ sodass $\pi$ stetig wird.
|
|||
\end{enumerate}
|
||||
\end{korollar}
|
||||
|
||||
\begin{beweis}
|
||||
\begin{beweis}\leavevmode
|
||||
\begin{enumerate}[label=\alph*)]
|
||||
\item Sei $Z(x) = A_1 \cup A_2$ mit $A_i \neq \emptyset$ abgeschlossen,
|
||||
disjunkt.
|
||||
|
|
|
@ -162,8 +162,7 @@ U_i = \Set{(x_0: \dots : x_n) \in \mdp^n(\mdr) | x_i \neq 0} &\rightarrow \mdr^n
|
|||
\end{enumerate}
|
||||
\end{korollar}
|
||||
|
||||
\begin{beweis}
|
||||
von a und b:
|
||||
\begin{beweis}\leavevmode
|
||||
\begin{enumerate}[label=\alph*),ref=\theplaindefinition.\alph*]
|
||||
\item Sei $y \in \mdr^n \setminus V(F)$. Weil $F$ stetig ist,
|
||||
gibt es $\delta > 0$, sodass $F(\fB_\delta(y)) \subseteq \fB_\varepsilon(F(y))$
|
||||
|
@ -321,7 +320,7 @@ $\partial X$ ist eine Mannigfaltigkeit der Dimension $n-1$.
|
|||
\item $f$ heißt \textbf{differenzierbar}
|
||||
(von Klasse $C^k$), wenn $f$ in jedem $x \in X$
|
||||
differenzierbar ist.
|
||||
\item $f$ heißt \textbf{Diffieomorphismus}\xindex{Diffieomorphismus},
|
||||
\item $f$ heißt \textbf{Diffeomorphismus}\xindex{Diffeomorphismus},
|
||||
wenn $f$ differenzierbar von Klasse $C^\infty$ ist und
|
||||
es eine differenzierbare Abbildung $g: Y \rightarrow X$
|
||||
von Klasse $C^\infty$ gibt mit $g \circ f = \text{id}_X$
|
||||
|
@ -347,7 +346,7 @@ $\partial X$ ist eine Mannigfaltigkeit der Dimension $n-1$.
|
|||
|
||||
\begin{beispiel}
|
||||
$f: \mdr \rightarrow \mdr, \;\;\; x \mapsto x^3$ ist kein
|
||||
Diffieomorphismis, aber Homöomorphismus, da mit $g(x) := \sqrt[3]{x}$
|
||||
Diffeomorphismis, aber Homöomorphismus, da mit $g(x) := \sqrt[3]{x}$
|
||||
gilt: $f \circ g = \text{id}_\mdr, \;\;\; g \circ f = \text{id}_\text{\mdr}$
|
||||
\end{beispiel}
|
||||
|
||||
|
@ -535,7 +534,7 @@ $\partial X$ ist eine Mannigfaltigkeit der Dimension $n-1$.
|
|||
h &\mapsto g \cdot h
|
||||
\end{align*}
|
||||
|
||||
ein Diffieomorphismus.
|
||||
ein Diffeomorphismus.
|
||||
\end{bemerkung}
|
||||
|
||||
\section{Simplizialkomplex}
|
||||
|
@ -618,33 +617,33 @@ $\partial X$ ist eine Mannigfaltigkeit der Dimension $n-1$.
|
|||
\begin{figure}[ht]
|
||||
\centering
|
||||
\subfloat[1D Simplizialkomplex]{
|
||||
\parbox{4cm}{\centering\input{figures/topology-1-d-simplizialkomplex}}
|
||||
\parbox[c][4cm]{4cm}{\centering\input{figures/topology-1-d-simplizialkomplex}}
|
||||
\label{fig:simplizialkomplex-1-d}
|
||||
}%
|
||||
\subfloat[2D Simplizialkomplex (ohne untere Fläche!)]{
|
||||
\parbox{4cm}{\centering\input{figures/topology-pyramid.tex}}
|
||||
\parbox[c][4cm]{4cm}{\centering\input{figures/topology-pyramid.tex}}
|
||||
\label{fig:simplizialkomplex-2-d}
|
||||
}%
|
||||
\subfloat[2D Simplizialkomplex]{
|
||||
\parbox{5cm}{\centering\input{figures/topology-oktaeder.tex}}
|
||||
\parbox[c][4cm]{5cm}{\centering\input{figures/topology-oktaeder.tex}}
|
||||
\label{fig:simplizialkomplex-2-d-okateder}
|
||||
}%
|
||||
|
||||
\subfloat[1D Simplizialkomplex]{
|
||||
\parbox{5cm}{\centering\input{figures/topology-cube.tex}}
|
||||
\parbox[c][4cm]{5cm}{\centering\input{figures/topology-cube.tex}}
|
||||
\label{fig:simplizialkomplex-cube}
|
||||
}%
|
||||
\subfloat[2D Simplizialkomplex]{
|
||||
\parbox{5cm}{\centering\input{figures/topology-cube-divided.tex}}
|
||||
\parbox[c][4cm]{5cm}{\centering\input{figures/topology-cube-divided.tex}}
|
||||
\label{fig:simplizialkomplex-cube-divided}
|
||||
}
|
||||
|
||||
\subfloat[$P$ ist kein Teilsimplex, da Eigenschaft (ii) verletzt ist]{
|
||||
\parbox{5cm}{\centering\input{figures/topology-triangle-no-simplicial-complex.tex}}
|
||||
\parbox[c][4cm]{5cm}{\centering\input{figures/topology-triangle-no-simplicial-complex.tex}}
|
||||
\label{fig:no-simplizialkomplex-triangles}
|
||||
}%
|
||||
\subfloat[Simplizialkomplex]{
|
||||
\parbox{5cm}{\centering\input{figures/topology-triangle-simplicial-complex.tex}}
|
||||
\parbox[c][4cm]{5cm}{\centering\input{figures/topology-triangle-simplicial-complex.tex}}
|
||||
\label{fig:simplizialkomplex-triangles}
|
||||
}%
|
||||
\label{fig:simplizialkomplexe}
|
||||
|
@ -733,20 +732,20 @@ $\partial X$ ist eine Mannigfaltigkeit der Dimension $n-1$.
|
|||
\begin{figure}[ht]
|
||||
\centering
|
||||
\subfloat[Dies wird häufig auch als Multigraph bezeichnet.]{
|
||||
\parbox{4cm}{\centering\input{figures/topology-graph-simple.tex}}
|
||||
\parbox[c][3cm]{4cm}{\centering\input{figures/topology-graph-simple.tex}}
|
||||
\label{fig:topology-graph-simple}
|
||||
}%
|
||||
\subfloat[Planare Einbettung des Tetraeders]{
|
||||
\parbox{4cm}{\centering\input{figures/topology-graph-tetraeder.tex}}
|
||||
\parbox[c][3cm]{4cm}{\centering\input{figures/topology-graph-tetraeder.tex}}
|
||||
\label{fig:topology-graph-tetraeder}
|
||||
}
|
||||
|
||||
\subfloat[$K_5$]{
|
||||
\parbox{4cm}{\centering\input{figures/topology-graph-k-5.tex}}
|
||||
\parbox[c][3cm]{4cm}{\centering\input{figures/topology-graph-k-5.tex}}
|
||||
\label{fig:k-5}
|
||||
}%
|
||||
\subfloat[$K_{3,3}$]{
|
||||
\parbox{4cm}{\centering\input{figures/topology-graph-k-3-3.tex}}
|
||||
\parbox[c][3cm]{4cm}{\centering\input{figures/topology-graph-k-3-3.tex}}
|
||||
\label{fig:k-3-3}
|
||||
}%
|
||||
\label{fig:graphen-beispiele}
|
||||
|
@ -827,11 +826,13 @@ $\partial X$ ist eine Mannigfaltigkeit der Dimension $n-1$.
|
|||
eine eine Triangulierungen $T$, die sowohl um $T_1$ als
|
||||
auch um $T_2$ Verfeinerung ist.
|
||||
|
||||
\todo[inline]{Komische Zeichung}
|
||||
\begin{center}
|
||||
\input{figures/topology-3.tex}\todo{Was bedeutet diese Zeichnung?}
|
||||
\end{center}
|
||||
|
||||
Nach Korollar~\ref{kor:simplex-unterteilung} ist
|
||||
$\chi(\partial P_1) = \chi(T_1) = \chi(T) = \chi(T_2) = \chi(\partial P_2) = 2$.
|
||||
Weil \obda{} $P_2$ ein Tetraeder ist.
|
||||
$\chi(\partial P_1) = \chi(T_1) = \chi(T) = \chi(T_2) = \chi(\partial P_2) = 2$,
|
||||
weil \obda{} $P_2$ ein Tetraeder ist.
|
||||
\end{enumerate}
|
||||
\end{beweis}
|
||||
|
||||
|
|
75
documents/GeoTopo/figures/topology-3.tex
Normal file
75
documents/GeoTopo/figures/topology-3.tex
Normal file
|
@ -0,0 +1,75 @@
|
|||
\newenvironment{customlegend}[1][]{%
|
||||
\begingroup
|
||||
% inits/clears the lists (which might be populated from previous
|
||||
% axes):
|
||||
\csname pgfplots@init@cleared@structures\endcsname
|
||||
\pgfplotsset{#1}%
|
||||
}{%
|
||||
% draws the legend:
|
||||
\csname pgfplots@createlegend\endcsname
|
||||
\endgroup
|
||||
}%
|
||||
|
||||
% makes \addlegendimage available (typically only available within an
|
||||
% axis environment):
|
||||
\def\addlegendimage{\csname pgfplots@addlegendimage\endcsname}
|
||||
|
||||
%%--------------------------------
|
||||
|
||||
% definition to insert numbers
|
||||
\pgfkeys{/pgfplots/number in legend/.style={%
|
||||
/pgfplots/legend image code/.code={%
|
||||
\node at (0.295,-0.0225){#1};
|
||||
},%
|
||||
},
|
||||
}
|
||||
|
||||
\pgfdeclarelayer{background}
|
||||
\pgfdeclarelayer{foreground}
|
||||
\pgfsetlayers{background,main,foreground}
|
||||
\begin{tikzpicture}
|
||||
\tikzstyle{point}=[circle,thick,draw=black,fill=black,inner sep=0pt,minimum width=4pt,minimum height=4pt]
|
||||
\tikzstyle{smallpoint}=[circle,thick,draw=red,fill=red,inner sep=0pt,minimum width=3pt,minimum height=3pt]
|
||||
\begin{pgfonlayer}{foreground}
|
||||
\node (a)[point] at (0,0) {};
|
||||
\node (b)[point] at (2,0) {};
|
||||
\node (c)[point] at (3,0.5) {};
|
||||
\node (d)[point] at (0,3) {};
|
||||
\node (e)[point] at (2,3) {};
|
||||
\node (f)[point] at (3,1.5) {};
|
||||
\node (g)[point] at (2,2.5) {};
|
||||
\node (h)[point] at (1,1.5) {};
|
||||
\end{pgfonlayer}
|
||||
|
||||
\draw (h.center) -- (e.center) -- (f.center) -- (b.center) -- cycle;
|
||||
\draw (h.center) -- (f.center);
|
||||
|
||||
\draw[green, densely dashed] (a.center) -- (d.center) -- (g.center) -- (c.center) -- cycle;
|
||||
\draw[green, densely dashed] (a.center) -- (g.center);
|
||||
|
||||
\begin{pgfonlayer}{foreground}
|
||||
\node (x)[point, red,fill=red] at (1.79,0.31) {};
|
||||
\node (x1)[smallpoint] at (1.2,1.5) {};
|
||||
\node (x2)[smallpoint] at (1.71,2.56) {};
|
||||
\node (x3)[smallpoint] at (2.5,1.5) {};
|
||||
\node (x4)[smallpoint] at (2.72,1.06) {};
|
||||
\end{pgfonlayer}
|
||||
\draw[blue, densely dotted] (x.center) -- (x1.center);
|
||||
\draw[blue, densely dotted] (x.center) -- (x2.center);
|
||||
\draw[blue, densely dotted] (x.center) -- (x3.center);
|
||||
\draw[blue, densely dotted] (x.center) -- (x4.center);
|
||||
|
||||
|
||||
\begin{customlegend}[
|
||||
legend entries={
|
||||
$T_1$,
|
||||
$T_2$,
|
||||
$?$
|
||||
},
|
||||
legend style={at={(4.5,3.5)},font=\footnotesize}] % <= to define position and font legend
|
||||
% the following are the "images" and numbers in the legend
|
||||
\addlegendimage{black}
|
||||
\addlegendimage{green,densely dashed}
|
||||
\addlegendimage{blue, densely dotted}
|
||||
\end{customlegend}
|
||||
\end{tikzpicture}
|
|
@ -5,7 +5,7 @@
|
|||
\node (c)[point] at (3,1) {};
|
||||
\node (d)[point] at (1,1) {};
|
||||
\node (e)[point] at (1.5,3) {};
|
||||
\node (f)[point] at (1.5,-2) {};
|
||||
\node (f)[point] at (1.5,-1) {};
|
||||
\draw (a.center) -- (b.center) -- (c.center) -- (e.center) -- (b.center);
|
||||
\draw (a.center) -- (e.center);
|
||||
\draw[dashed] (a.center) -- (d.center) -- (c.center);
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue