2
0
Fork 0
mirror of https://github.com/MartinThoma/LaTeX-examples.git synced 2025-04-19 11:38:05 +02:00

Titelseite verändert; added acronyms page

This commit is contained in:
Martin Thoma 2014-01-30 13:35:55 +01:00
parent 43e113d299
commit a169a715c6
4 changed files with 107 additions and 5 deletions

View file

@ -0,0 +1,9 @@
SOURCE = acronyms-example
make:
pdflatex $(SOURCE).tex -output-format=pdf
pdflatex $(SOURCE).tex -output-format=pdf
pdflatex $(SOURCE).tex -output-format=pdf
make clean
clean:
rm -rf $(TARGET) *.class *.html *.log *.aux *.out

View file

@ -0,0 +1,90 @@
\documentclass[a4paper]{scrartcl}
\usepackage{amssymb, amsmath} % needed for math
\usepackage[utf8]{inputenc} % this is needed for umlauts
\usepackage[ngerman]{babel} % this is needed for umlauts
\usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
\usepackage[margin=2.5cm]{geometry} %layout
\usepackage{hyperref} % links im text
\usepackage{acronym}
\title{Minimal distance to a cubic function}
\author{Martin Thoma}
\hypersetup{
pdfauthor = {Martin Thoma},
pdfkeywords = {},
pdftitle = {}
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Begin document %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
\maketitle
\begin{abstract}
In this paper I want to discuss how to find the minimal distance of a
point $P = (x_p, y_p)$ to a cubic function $f: \mathbb{R} \rightarrow \mathbb{R}$,
$f(x) = a \cdot x^3 + b \cdot x^2 + c \cdot x + d$.
So I search for $x \in \mathbb{R}$ such that \dots
\end{abstract}
\section{Minimal distance constant function}
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla
quam elit, vestibulum nec facilisis at, condimentum id enim. Sed
iaculis lacinia quam, vel \ac{KDE} accumsan eros tempor in. Integer ipsum
metus, accumsan sit amet commodo a, egestas vitae sem. Mauris ut
orci ut dolor viverra convallis \ac{KDE} nec a erat. Aenean consequat elit
vel eros fermentum vestibulum id at ipsum. In vitae orci mauris, et
rhoncus odio. Pellentesque habitant morbi tristique senectus et netus
et malesuada fames ac turpis egestas.
\clearpage
\begin{acronym}[SQL]
\acro{KDE}{K Desktop Environment}
\acro{SQL}{Structured Query Language}
\acro{Bash}{Bourne-again shell}
\acro{KDE}{K Desktop Environment}
\acro{SQL}{Structured Query Language}
\acro{Bash}{Bourne-again shell}
\acro{KDE}{K Desktop Environment}
\acro{SQL}{Structured Query Language}
\acro{Bash}{Bourne-again shell}
\acro{KDE}{K Desktop Environment}
\acro{SQL}{Structured Query Language}
\acro{Bash}{Bourne-again shell}
\acro{KDE}{K Desktop Environment}
\acro{SQL}{Structured Query Language}
\acro{Bash}{Bourne-again shell}
\acro{KDE}{K Desktop Environment}
\acro{SQL}{Structured Query Language}
\acro{Bash}{Bourne-again shell}
\acro{KDE}{K Desktop Environment}
\acro{SQL}{Structured Query Language}
\acro{Bash}{Bourne-again shell}
\acro{KDE}{K Desktop Environment}
\acro{SQL}{Structured Query Language}
\acro{Bash}{Bourne-again shell}
\acro{KDE}{K Desktop Environment}
\acro{SQL}{Structured Query Language}
\acro{Bash}{Bourne-again shell}
\acro{KDE}{K Desktop Environment}
\acro{SQL}{Structured Query Language}
\acro{Bash}{Bourne-again shell}
\acro{KDE}{K Desktop Environment}
\acro{SQL}{Structured Query Language}
\acro{Bash}{Bourne-again shell}
\acro{KDE}{K Desktop Environment}
\acro{SQL}{Structured Query Language}
\acro{Bash}{Bourne-again shell}
\acro{KDE}{K Desktop Environment}
\acro{SQL}{Structured Query Language}
\acro{Bash}{Bourne-again shell}
\acro{KDE}{K Desktop Environment}
\acro{SQL}{Structured Query Language}
\acro{Bash}{Bourne-again shell}
\acro{KDE}{K Desktop Environment}
\acro{SQL}{Structured Query Language}
\acro{Bash}{Bourne-again shell}
\end{acronym}
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 13 KiB

After

Width:  |  Height:  |  Size: 13 KiB

Before After
Before After

View file

@ -9,22 +9,25 @@
\tkzSetUpLine[line width=1]
\tkzInit[xmax=1.2,ymax=1,xmin=-1.2,ymin=0]
\pgfmathsetmacro{\Radius}{1}
\tkzDefPoints{0.9/0.7/Z, 0/0/O, 0/1/i}
\tkzDefPoints{2.0/1.0/Z, 0/0/O, 0/1/i}
%% Konstruktion von 1/ \overline{z} und -1/ \overline{z}
\tkzTangent[from with R = Z,/tikz/overlay](O,\Radius cm) \tkzGetPoints{T1}{T2}
\tkzInterLL(T1,T2)(O,Z) \tkzGetPoint{dZ}
\tkzDefPointBy[reflection = over O--i](dZ) \tkzGetPoint{ndZ}
\tkzDefPointBy[symmetry = center O](dZ) \tkzGetPoint{other}
%%
\tkzDrawArc[R,line width=1pt,color=orange](O,\Radius cm)(0,180)
\tkzAxeXY
\tkzDrawPoints(Z, dZ, ndZ)
\tkzLabelPoint[right](Z){$Z = r \cdot e^{\iu \varphi}$}
\tkzLabelPoint[left](dZ){$\frac{1}{\overline{z}} = \frac{1}{r} \cdot e^{-\iu \varphi}$}
\tkzLabelPoint[below left](ndZ){$-\frac{1}{\overline{z}}$}
\tkzDrawPoints(Z, dZ, ndZ, other)
\tkzLabelPoint[left](Z){$z = r \cdot e^{\iu \varphi}$}
\tkzLabelPoint[below](other){$-\frac{1}{\overline{z}}$}
\tkzLabelPoint[below right](dZ){$\frac{1}{\overline{z}} = \frac{1}{r} \cdot e^{\iu \varphi}$}
\tkzLabelPoint[above left](ndZ){?}
\tkzDrawSegments[dashed](O,Z)
\tkzDrawSegments[dashed](O,ndZ)
\tkzDrawSegments[dashed](O,other)
\end{tikzpicture}
\end{document}