2
0
Fork 0
mirror of https://github.com/MartinThoma/LaTeX-examples.git synced 2025-04-26 06:48:04 +02:00

many improvements (theorem-proof-structure for constant function; corrected errors)

This commit is contained in:
Martin Thoma 2013-12-21 19:10:35 +01:00
parent 01e343f66c
commit a1274e176f
10 changed files with 163 additions and 123 deletions

View file

@ -59,18 +59,22 @@ There can be up to 3 solutions in such an equation. Those solutions
can be found with a closed formula. But not every solution of the
equation given by Theorem~\ref{thm:fermats-theorem}
has to be a solution to the given problem.
\begin{example}
\goodbreak
\begin{example}\label{ex:false-positive}
Let $a = 1, b = 0, c= 1, x_p= 0, y_p = 1$.
So $f(x) = x^2 + 1$ and $P(0, 1)$.
\begin{align}
0 &\stackrel{!}{=} 4 x^3 - 2x\\
&=2x(2x^2 - 1)\\
\Rightarrow x_1 &= 0 \;\;\; x_{2,3} = \pm \frac{1}{\sqrt{2}}
\end{align}
As you can easily verify, only $x_1$ is a minimum of $d_{P,f}$.
So $f(x) = x^2 - 1$ and $P(0, 1)$.
\begin{align}
\xRightarrow{\text{Equation}~\ref{eq:quadratic-derivative-eq-0}} 0 &\stackrel{!}{=} 2x^3 - 3x\\
&= x(2x^2-3)\\
\Rightarrow x_{1,2} &= \pm \sqrt{\frac{3}{2}} \text{ and } x_3 = 0\\
d_{P,f}(x_3) &= \sqrt{0^2 + (-1-1)^2} = 2\\
d_{P,f} \left (+ \sqrt{\frac{3}{2}} \right ) &= \sqrt{\left (\sqrt{\frac{3}{2} - 0} \right )^2 + \left (\frac{1}{2}-1 \right )^2}\\
&= \sqrt{\nicefrac{3}{2}+\nicefrac{1}{4}} \\
&= \sqrt{\nicefrac{7}{4}}\\
&= d_{P,f} \left (- \sqrt{\frac{3}{2}} \right )
\end{align}
This means $x_3$ is not a point of minimal distance, but with
$(d_{P,f}(x_3))' = 0$.
\end{example}
@ -81,8 +85,12 @@ As you can easily verify, only $x_1$ is a minimum of $d_{P,f}$.
\end{theorem}
\begin{proof}
The number of closests points of $f$ cannot be bigger than 3, because
Equation~\ref{eq:quadratic-derivative-eq-0} is a polynomial function
of degree 3. Such a function can have at most 3 roots.
In the following, I will do some transformations with $f = f_0$ and
$P = P_0$ .
$P = P_0$.
Moving $f_0$ and $P_0$ simultaneously in $x$ or $y$ direction does
not change the minimum distance. Furthermore, we can find the
@ -95,8 +103,8 @@ First of all, we move $f_0$ and $P_0$ by $\frac{b}{2a}$ in $x$ direction, so
Because:\footnote{The idea why you subtract $\frac{b}{2a}$ within
$f$ is that when you subtract something from $x$ before applying
$f$ it takes more time ($x$ needs to be bigger) to get to the same
situation. So to move the whole graph by $1$ to the left whe have
to add $+1$.}
situation. In consequence, if we want to move the whole graph by 1
to the left, we have to add $+1$.}
\begin{align}
f(x-\nicefrac{b}{2a}) &= a (x-\nicefrac{b}{2a})^2 + b (x-\nicefrac{b}{2a}) + c\\
&= a (x^2 - \nicefrac{b}{a} x + \nicefrac{b^2}{4a^2}) + bx - \nicefrac{b^2}{2a} + c\\
@ -117,15 +125,15 @@ Then compute:
&= \sqrt{x^2 + (ax^2-w)^2}\\
&= \sqrt{x^2 + a^2 x^4-2aw x^2+w^2}\\
&= \sqrt{a^2 x^4 + (1-2aw) x^2 + w^2}\\
&= \sqrt{\left (a^2 x^2 + \frac{1-2 a w}{2} \right )^2 + w^2 - (1-2 a w)^2}\\
&= \sqrt{\left (a^2 x^2 + \nicefrac{1}{2}-a w \right )^2 + \big (w^2 - (1-2 a w)^2 \big)}
&= \sqrt{\left (a x^2 + \frac{1-2 a w}{2a} \right )^2 + w^2 - (\frac{1-2 a w}{2a})^2}\\
&= \sqrt{\left (a x^2 + \nicefrac{1}{2a}- w \right )^2 + \big (w^2 - (\frac{1-2 a w}{2a})^2 \big)}
\end{align}
The term
\[a^2 x^2 + (\nicefrac{1}{2}-a w)\]
\[a^2 x^2 + (\nicefrac{1}{2a}- w)\]
should get as close to $0$ as possilbe when we want to minimize
$d_{P,{f_2}}$. For $w \leq \nicefrac{1}{2a}$ you only have $x = 0$ as a minimum.
For all other points $P = (0, w)$, there are exactly two minima $x_{1,2} = \pm \sqrt{aw - \nicefrac{1}{2}}$.
For all other points $P = (0, w)$, there are exactly two minima $x_{1,2} = \pm \sqrt{\frac{\frac{1}{2a} - w}{a}}$.
$\qed$
\end{proof}
@ -136,7 +144,7 @@ We start with the graph that was moved so that $f_2 = ax^2$.
In this case, we have already found the solution. If $w = y_P + \frac{b^2}{4a} - c > \frac{1}{2a}$,
then there are two solutions:
\[x_{1,2} = \pm \sqrt{aw - \nicefrac{1}{2}}\]
\[x_{1,2} = \pm \sqrt{\frac{\frac{1}{2a} - w}{a}}\]
Otherwise, there is only one solution $x_1 = 0$.
\textbf{Case 2:} $P = (z, w)$ is not on the symmetry axis, so $z \neq 0$. Then you compute:
@ -147,8 +155,7 @@ Otherwise, there is only one solution $x_1 = 0$.
0 &\stackrel{!}{=} \Big(\big(d_{P, {f_2}}(x)\big)^2\Big)' \\
&= 4a^2x^3 + 2(1- 2 aw)x +(- 2z)\\
&= 2 \left (2a^2x^2 + (1- 2 aw) \right )x - 2z\\
\Leftrightarrow 0 &\stackrel{!}{=} (2a^2x^2 + (1- 2 aw)) x - z\\
&= 2 a^2 x^3 + (1- 2 aw) x - z\\
\Leftrightarrow 0 &\stackrel{!}{=} 2a^2x^3 + (1- 2 aw) x - z\\
\Leftrightarrow 0 &\stackrel{!}{=} x^3 + \underbrace{\frac{1- 2 aw}{2 a^2}}_{=: \alpha} x + \underbrace{\frac{-z}{2 a^2}}_{=: \beta}\\
&= x^3 + \alpha x + \beta\label{eq:simple-cubic-equation-for-quadratic-distance}
\end{align}
@ -156,54 +163,15 @@ Otherwise, there is only one solution $x_1 = 0$.
Let $t$ be defined as
\[t := \sqrt[3]{\sqrt{3 \cdot (4 \alpha^3 + 27 \beta^2)} -9\beta}\]
\textbf{Case 2.1:} $4 \alpha^3 + 27 \beta^2 \geq 0$:
The solution of Equation~\ref{eq:simple-cubic-equation-for-quadratic-distance}
is
\[x = \frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t}\]
I will make use of the following identities:
\begin{align*}
(1-i \sqrt{3})^2 &= -2 (1+i \sqrt{3})\\
(1+i \sqrt{3})^2 &= -2 (1-i \sqrt{3})\\
(1 \pm i \sqrt{3})^3 &= -8
\end{align*}
When you insert this in Equation~\ref{eq:simple-cubic-equation-for-quadratic-distance}
you get:\footnote{Remember: $(a-b)^3 = a^3-3 a^2 b+3 a b^2-b^3$}
\allowdisplaybreaks
\begin{align}
0 &\stackrel{!}{=} \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right )^3 + \alpha \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right ) + \beta\\
&= (\frac{t}{\sqrt[3]{18}})^3
- 3 (\frac{t}{\sqrt[3]{18}})^2 \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t}
+ 3 (\frac{t}{\sqrt[3]{18}})(\frac{\sqrt[3]{\frac{2}{3}} \alpha }{t})^2
- (\frac{\sqrt[3]{\frac{2}{3}} \alpha }{t})^3
+ \alpha \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right ) + \beta\\
&= \frac{t^3}{18}
- \frac{3t^2}{\sqrt[3]{18^2}} \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t}
+ \frac{3t}{\sqrt[3]{18}} \frac{\sqrt[3]{\frac{4}{9}} \alpha^2 }{t^2}
- \frac{\frac{2}{3} \alpha^3 }{t^3}
+ \alpha \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right ) + \beta\\
&= \frac{t^3}{18}
- \frac{\sqrt[3]{18} t \alpha}{\sqrt[3]{18^2}}
+ \frac{\sqrt[3]{12} \alpha^2}{\sqrt[3]{18} t}
- \frac{\frac{2}{3} \alpha^3 }{t^3}
+ \alpha \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right ) + \beta\\
&= \frac{t^3}{18}
- \frac{t \alpha}{\sqrt[3]{18}}
\color{red}+ \frac{\sqrt[3]{2} \alpha^2}{\sqrt[3]{3} t} \color{black}
- \frac{\frac{2}{3} \alpha^3 }{t^3}
+ \color{red}\alpha \color{black} \left (\frac{t}{\sqrt[3]{18}} \color{red}- \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \color{black}\right )
+ \beta\\
&= \frac{t^3}{18} \color{blue}- \frac{t \alpha}{\sqrt[3]{18}} \color{black}
- \frac{\frac{2}{3} \alpha^3 }{t^3}
\color{blue}+ \frac{\alpha t}{\sqrt[3]{18}} \color{black}
+ \beta\\
&= \frac{t^3}{18} - \frac{\frac{2}{3} \alpha^3 }{t^3} + \beta\\
&= \frac{t^6 - 12 \alpha^3 + \beta 18 t^3}{18t^3}
\end{align}
Now only go on calculating with the numerator. Start with resubstituting
$t$:
\begin{align}
0 &= (\sqrt{3 \cdot (4 \alpha^3 + 27 \beta^2)} -9\beta)^2 - 12 \alpha^3 + \beta 18 (\sqrt{3 \cdot (4 \alpha^3 + 27 \beta^2)} -9\beta)\\
&= (\sqrt{3 \cdot (4 \alpha^3 + 27 \beta^2)})^2 +(9\beta)^2 - 12 \alpha^3 -18\cdot 9\beta^2\\
&= 3 \cdot (4 \alpha^3 + 27 \beta^2) -81 \beta^2 - 12 \alpha^3\\
&= (4 \alpha^3 + 27 \beta^2) -27 \beta^2 - 4 \alpha^3\\
&= 0
\end{align}
\textbf{Case 2.1:}
\input{quadratic-case-2.1}
\textbf{Case 2.2:}
\input{quadratic-case-2.2}