mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-26 06:48:04 +02:00
many improvements (theorem-proof-structure for constant function; corrected errors)
This commit is contained in:
parent
01e343f66c
commit
a1274e176f
10 changed files with 163 additions and 123 deletions
|
@ -1,7 +1,13 @@
|
|||
\chapter{Linear function}
|
||||
\section{Defined on $\mdr$}
|
||||
Let $f(x) = m \cdot x + t$ with $m \in \mdr \setminus \Set{0}$ and
|
||||
$t \in \mdr$ be a linear function.
|
||||
\begin{theorem}[Solution formula for linear functions on $\mdr$]
|
||||
Let $f: \mdr \rightarrow \mdr $ be a linear function
|
||||
$f(x) := m \cdot x + t$ with $m \in \mdr \setminus \Set{0}$ and
|
||||
$t \in \mdr$ be a linear function.
|
||||
|
||||
Then the points $(x, f(x))$ with minimal distance are given by:
|
||||
\[x = \frac{m}{m^2+1} \left ( y_P + \frac{1}{m} \cdot x_P - t \right )\]
|
||||
\end{theorem}
|
||||
|
||||
\begin{figure}[htp]
|
||||
\centering
|
||||
|
@ -39,30 +45,32 @@ $t \in \mdr$ be a linear function.
|
|||
\label{fig:linear-min-distance}
|
||||
\end{figure}
|
||||
|
||||
Now you can drop a perpendicular $f_\bot$ through $P$ on $f(x)$. The
|
||||
slope of $f_\bot$ is $- \frac{1}{m}$ and $t_\bot$ can be calculated:\nobreak
|
||||
\begin{align}
|
||||
f_\bot(x) &= - \frac{1}{m} \cdot x + t_\bot\\
|
||||
\Rightarrow y_P &= - \frac{1}{m} \cdot x_P + t_\bot\\
|
||||
\Leftrightarrow t_\bot &= y_P + \frac{1}{m} \cdot x_P
|
||||
\end{align}
|
||||
\begin{proof}
|
||||
Now you can drop a perpendicular $f_\bot$ through $P$ on $f(x)$. The
|
||||
slope of $f_\bot$ is $- \frac{1}{m}$ and $t_\bot$ can be calculated:\nobreak
|
||||
\begin{align}
|
||||
f_\bot(x) &= - \frac{1}{m} \cdot x + t_\bot\\
|
||||
\Rightarrow y_P &= - \frac{1}{m} \cdot x_P + t_\bot\\
|
||||
\Leftrightarrow t_\bot &= y_P + \frac{1}{m} \cdot x_P
|
||||
\end{align}
|
||||
|
||||
The point $(x, f(x))$ where the perpendicular $f_\bot$ crosses $f$
|
||||
is calculated this way:
|
||||
\begin{align}
|
||||
f(x) &= f_\bot(x)\\
|
||||
\Leftrightarrow m \cdot x + t &= - \frac{1}{m} \cdot x + \left(y_P + \frac{1}{m} \cdot x_P \right)\\
|
||||
\Leftrightarrow \left (m + \frac{1}{m} \right ) \cdot x &= y_P + \frac{1}{m} \cdot x_P - t\\
|
||||
\Leftrightarrow x &= \frac{m}{m^2+1} \left ( y_P + \frac{1}{m} \cdot x_P - t \right )\label{eq:solution-of-the-linear-problem}
|
||||
\end{align}
|
||||
The point $(x, f(x))$ where the perpendicular $f_\bot$ crosses $f$
|
||||
is calculated this way:
|
||||
\begin{align}
|
||||
f(x) &= f_\bot(x)\\
|
||||
\Leftrightarrow m \cdot x + t &= - \frac{1}{m} \cdot x + \left(y_P + \frac{1}{m} \cdot x_P \right)\\
|
||||
\Leftrightarrow \left (m + \frac{1}{m} \right ) \cdot x &= y_P + \frac{1}{m} \cdot x_P - t\\
|
||||
\Leftrightarrow x &= \frac{m}{m^2+1} \left ( y_P + \frac{1}{m} \cdot x_P - t \right )\label{eq:solution-of-the-linear-problem}
|
||||
\end{align}
|
||||
|
||||
There is only one point with minimal distance. I'll call the result
|
||||
from line~\ref{eq:solution-of-the-linear-problem} \enquote{solution of
|
||||
the linear problem} and the function that gives this solution
|
||||
$S_1(f,P)$.
|
||||
There is only one point with minimal distance. I'll call the result
|
||||
from line~\ref{eq:solution-of-the-linear-problem} \enquote{solution of
|
||||
the linear problem} and the function that gives this solution
|
||||
$S_1(f,P)$.
|
||||
|
||||
See Figure~\ref{fig:linear-min-distance}
|
||||
to get intuition about the geometry used.
|
||||
See Figure~\ref{fig:linear-min-distance}
|
||||
to get intuition about the geometry used. $\qed$
|
||||
\end{proof}
|
||||
\clearpage
|
||||
|
||||
\section{Defined on a closed interval $[a,b] \subseteq \mdr$}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue