mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-26 06:48:04 +02:00
many improvements (theorem-proof-structure for constant function; corrected errors)
This commit is contained in:
parent
01e343f66c
commit
a1274e176f
10 changed files with 163 additions and 123 deletions
|
@ -64,9 +64,19 @@ This result means:
|
|||
\clearpage
|
||||
|
||||
\section{Defined on a closed interval $[a,b] \subseteq \mdr$}
|
||||
\begin{theorem}[Solution formula for constant functions]
|
||||
Let $f:[a,b] \rightarrow \mdr$, $f(x) := c$ with $a,b,c \in \mdr$ and
|
||||
$a \leq b$ be a constant function.
|
||||
|
||||
Then the point $(x, f(x))$ of $f$ with minimal distance to $P$ is
|
||||
given by:
|
||||
\[\underset{x\in [a,b]}{\arg \min d_{P,f}(x)} = \begin{cases}
|
||||
S_0(f,P) &\text{if } S_0(f,P) \cap [a,b] \neq \emptyset \\
|
||||
\Set{a} &\text{if } S_0(f,P) \ni x_P < a\\
|
||||
\Set{b} &\text{if } S_0(f,P) \ni x_P > b
|
||||
\end{cases}\]
|
||||
\end{theorem}
|
||||
|
||||
\begin{figure}[htp]
|
||||
\centering
|
||||
\begin{tikzpicture}
|
||||
|
@ -111,17 +121,16 @@ $a \leq b$ be a constant function.
|
|||
\label{fig:constant-min-distance-closed-intervall}
|
||||
\end{figure}
|
||||
|
||||
The point with minimum distance can be found by:
|
||||
\[\underset{x\in\mdr}{\arg \min d_{P,f}(x)} = \begin{cases}
|
||||
S_0(f,P) &\text{if } S_0(f,P) \cap [a,b] \neq \emptyset \\
|
||||
\Set{a} &\text{if } S_0(f,P) \ni x_P < a\\
|
||||
\Set{b} &\text{if } S_0(f,P) \ni x_P > b
|
||||
\end{cases}\]
|
||||
|
||||
Because:
|
||||
\begin{proof}
|
||||
\begin{align}
|
||||
\underset{x\in[a,b]}{\arg \min d_{P,f}(x)} &= \underset{x\in[a,b]}{\arg \min d_{P,f}(x)^2}\\
|
||||
&=\underset{x\in[a,b]}{\arg \min} x^2 - 2x_P x + (x_P^2 + y_P^2 - 2 y_P c + c^2)\\
|
||||
&=\underset{x\in[a,b]}{\arg \min} x^2 - 2 x_P x + x_P^2\\
|
||||
&=\underset{x\in[a,b]}{\arg \min} \big (x^2 - 2x_P x + x_P^2 + \overbrace{(y_P^2 - 2 y_P c + c^2)}^{\text{constant}} \big )\\
|
||||
&=\underset{x\in[a,b]}{\arg \min} (x^2 - 2 x_P x + x_P^2)\\
|
||||
&=\underset{x\in[a,b]}{\arg \min} (x-x_P)^2
|
||||
\end{align}
|
||||
|
||||
which is optimal for $x = x_P$, but if $x_P \notin [a,b]$, you want
|
||||
to make this term as small as possible. It gets as small as possible when
|
||||
$x$ is as similar to $x_p$ as possible. This yields directly to the
|
||||
solution formula.$\qed$
|
||||
\end{proof}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue