2
0
Fork 0
mirror of https://github.com/MartinThoma/LaTeX-examples.git synced 2025-04-26 06:48:04 +02:00

many improvements (theorem-proof-structure for constant function; corrected errors)

This commit is contained in:
Martin Thoma 2013-12-21 19:10:35 +01:00
parent 01e343f66c
commit a1274e176f
10 changed files with 163 additions and 123 deletions

View file

@ -64,9 +64,19 @@ This result means:
\clearpage
\section{Defined on a closed interval $[a,b] \subseteq \mdr$}
\begin{theorem}[Solution formula for constant functions]
Let $f:[a,b] \rightarrow \mdr$, $f(x) := c$ with $a,b,c \in \mdr$ and
$a \leq b$ be a constant function.
Then the point $(x, f(x))$ of $f$ with minimal distance to $P$ is
given by:
\[\underset{x\in [a,b]}{\arg \min d_{P,f}(x)} = \begin{cases}
S_0(f,P) &\text{if } S_0(f,P) \cap [a,b] \neq \emptyset \\
\Set{a} &\text{if } S_0(f,P) \ni x_P < a\\
\Set{b} &\text{if } S_0(f,P) \ni x_P > b
\end{cases}\]
\end{theorem}
\begin{figure}[htp]
\centering
\begin{tikzpicture}
@ -111,17 +121,16 @@ $a \leq b$ be a constant function.
\label{fig:constant-min-distance-closed-intervall}
\end{figure}
The point with minimum distance can be found by:
\[\underset{x\in\mdr}{\arg \min d_{P,f}(x)} = \begin{cases}
S_0(f,P) &\text{if } S_0(f,P) \cap [a,b] \neq \emptyset \\
\Set{a} &\text{if } S_0(f,P) \ni x_P < a\\
\Set{b} &\text{if } S_0(f,P) \ni x_P > b
\end{cases}\]
Because:
\begin{proof}
\begin{align}
\underset{x\in[a,b]}{\arg \min d_{P,f}(x)} &= \underset{x\in[a,b]}{\arg \min d_{P,f}(x)^2}\\
&=\underset{x\in[a,b]}{\arg \min} x^2 - 2x_P x + (x_P^2 + y_P^2 - 2 y_P c + c^2)\\
&=\underset{x\in[a,b]}{\arg \min} x^2 - 2 x_P x + x_P^2\\
&=\underset{x\in[a,b]}{\arg \min} \big (x^2 - 2x_P x + x_P^2 + \overbrace{(y_P^2 - 2 y_P c + c^2)}^{\text{constant}} \big )\\
&=\underset{x\in[a,b]}{\arg \min} (x^2 - 2 x_P x + x_P^2)\\
&=\underset{x\in[a,b]}{\arg \min} (x-x_P)^2
\end{align}
which is optimal for $x = x_P$, but if $x_P \notin [a,b]$, you want
to make this term as small as possible. It gets as small as possible when
$x$ is as similar to $x_p$ as possible. This yields directly to the
solution formula.$\qed$
\end{proof}