2
0
Fork 0
mirror of https://github.com/MartinThoma/LaTeX-examples.git synced 2025-04-26 06:48:04 +02:00

fixed typo

This commit is contained in:
Martin Thoma 2013-09-12 16:14:33 +02:00
parent 7f7b868dd2
commit 95423ec77a
2 changed files with 30 additions and 18 deletions

View file

@ -8,28 +8,40 @@ wobei $L$ eine invertierbare, untere Dreiecksmatrix ist.
Geben Sie die Formel zur Berechnung von $y_i$ an.
\textbf{Lösung:}
\[y_i = \frac{b_i - \sum_{k=1}^{i-1} l_{ik} \cdot y_k}{l_{ii}}\]
\[y_i = \frac{b_i - \sum_{k=i}^{i-1} l_{ik} \cdot y_k}{l_{ii}}\]
\begin{algorithm}[H]
\begin{algorithmic}
\Require Lower, invertable, triangular Matrix $L \in \mathbb{R}^{n \times n}$, Vektor $b$
\Procedure{solve}{$L$, $b$}
\For{$i \in \Set{1, \dots n}$}
\State $y_i \gets b_i$
\For{$k \in \Set{1, \dots, i-1}$}
\State $y_i \gets y_i - l_{ik} \cdot y_k$
\EndFor
\State $y_i \gets \frac{y_i}{l_{ii}}$
\EndFor
\EndProcedure
\end{algorithmic}
\caption{Calculate $y$ in $Ly = b$}
\end{algorithm}
\subsection*{Teilaufgabe b}
\[Ax = b ? PAx = Pb ? LRx = Pb \]
\[Ax = b \Leftrightarrow PAx = Pb \Leftrightarrow LRx = Pb \]
Pseudocode:
\begin{algorithm}[H]
\begin{algorithmic}
\Require Matrix $A$, Vektor $b$
\Procedure{CalculateLegendre}{$A$, $b$}
\State $P, L, R \gets \Call{LRZerlegung}{A}$
\State $b^* \gets Pb$
\State $c \gets \Call{VorwärtsSubstitution}{L, b^*}$
\State $x \gets \Call{RückwärtsSubstitution}{R, c}$
\State \Return $x$
\EndProcedure
\end{algorithmic}
\caption{Calculate TODO}
\label{alg:TODO}
\end{algorithm}
\begin{algorithm}[H]
\begin{algorithmic}
\Require Matrix $A$, Vektor $b$
\Procedure{LoeseLGS}{$A$, $b$}
\State $P, L, R \gets \Call{LRZer}{A}$
\State $b^* \gets Pb$
\State $c \gets \Call{VorSub}{L, b^*}$
\State $x \gets \Call{RueckSub}{R, c}$
\State \Return $x$
\EndProcedure
\end{algorithmic}
\caption{Löse ein LGS $Ax = b$}
\end{algorithm}
\subsection*{Teilaufgabe c}
Der Gesamtaufwand ist: