2
0
Fork 0
mirror of https://github.com/MartinThoma/LaTeX-examples.git synced 2025-04-26 06:48:04 +02:00

Add sarsa lambda pseudocode

This commit is contained in:
Martin Thoma 2016-07-22 16:40:51 +02:00
parent ea63ce4d57
commit 93fc9e52ed
4 changed files with 96 additions and 0 deletions

View file

@ -0,0 +1,57 @@
\documentclass{article}
\usepackage[pdftex,active,tightpage]{preview}
\setlength\PreviewBorder{2mm}
\usepackage[utf8]{inputenc} % this is needed for umlauts
\usepackage[ngerman]{babel} % this is needed for umlauts
\usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
\usepackage{amssymb,amsmath,amsfonts} % nice math rendering
\usepackage{braket} % needed for \Set
\usepackage{caption}
\usepackage{algorithm}
\usepackage[noend]{algpseudocode}
\DeclareCaptionFormat{myformat}{#3}
\captionsetup[algorithm]{format=myformat}
\begin{document}
\begin{preview}
\begin{algorithm}[H]
\begin{algorithmic}
\Require
\Statex Sates $\mathcal{X} = \{1, \dots, n_x\}$
\Statex Actions $\mathcal{A} = \{1, \dots, n_a\},\qquad A: \mathcal{X} \Rightarrow \mathcal{A}$
\Statex Reward function $R: \mathcal{X} \times \mathcal{A} \rightarrow \mathbb{R}$
\Statex Black-box (probabilistic) transition function $T: \mathcal{X} \times \mathcal{A} \rightarrow \mathcal{X}$
\Statex Learning rate $\alpha \in [0, 1]$, typically $\alpha = 0.1$
\Statex Discounting factor $\gamma \in [0, 1]$
\Statex $\lambda \in [0, 1]$: Trade-off between TD and MC
\Procedure{QLearning}{$\mathcal{X}$, $A$, $R$, $T$, $\alpha$, $\gamma$, $\lambda$}
\State Initialize $Q: \mathcal{X} \times \mathcal{A} \rightarrow \mathbb{R}$ arbitrarily
\State Initialize $e: \mathcal{X} \times \mathcal{A} \rightarrow \mathbb{R}$ with 0. \Comment{eligibility trace}
% \State Start in state $s \in \mathcal{X}$
\While{$Q$ is not converged}
\State Select $(s, a) \in \mathcal{X} \times \mathcal{A}$ arbitrarily
\While{$s$ is not terminal}
\State $r \gets R(s, a)$
\State $s' \gets T(s, a)$ \Comment{Receive the new state}
\State Calculate $\pi$ based on $Q$ (e.g. epsilon-greedy)
\State $a' \gets \pi(s')$
\State $e(s, a) \gets e(s, a) + 1$
\State $\delta \gets r + \gamma \cdot Q(s', a') - Q(s, a)$
\For{$(\tilde{s}, \tilde{a}) \in \mathcal{X} \times \mathcal{A}$}
\State $Q(\tilde{s}, \tilde{a}) \gets Q(\tilde{s}, \tilde{a}) + \alpha \cdot \delta \cdot e(\tilde{s}, \tilde{a})$
\State $e(\tilde{s}, \tilde{a}) \gets \gamma \cdot \lambda \cdot e(\tilde{s}, \tilde{a})$
\EndFor
\State $s \gets s'$
\State $a \gets a'$
\EndWhile
\EndWhile
\Return $Q$
\EndProcedure
\end{algorithmic}
\caption{SARSA($\lambda$): Learn function $Q: \mathcal{X} \times \mathcal{A} \rightarrow \mathbb{R}$}
\label{alg:sarsa-lambda}
\end{algorithm}
\end{preview}
\end{document}