diff --git a/documents/math-minimal-distance-to-cubic-function/math-minimal-distance-to-cubic-function.pdf b/documents/math-minimal-distance-to-cubic-function/math-minimal-distance-to-cubic-function.pdf index f75eed7..6071a3e 100644 Binary files a/documents/math-minimal-distance-to-cubic-function/math-minimal-distance-to-cubic-function.pdf and b/documents/math-minimal-distance-to-cubic-function/math-minimal-distance-to-cubic-function.pdf differ diff --git a/documents/math-minimal-distance-to-cubic-function/quadratic-functions.tex b/documents/math-minimal-distance-to-cubic-function/quadratic-functions.tex index e55d55b..ffbb78b 100644 --- a/documents/math-minimal-distance-to-cubic-function/quadratic-functions.tex +++ b/documents/math-minimal-distance-to-cubic-function/quadratic-functions.tex @@ -150,7 +150,7 @@ Otherwise, there is only one solution $x_1 = 0$. \textbf{Case 2:} $P = (z, w)$ is not on the symmetry axis, so $z \neq 0$. Then you compute: \begin{align} - d_{P,{f_2}}(x) &= \sqrt{(x-z)^2 + (f(x)-w)^2}\\ + d_{P,{f_2}}(x) &= \sqrt{(x-z)^2 + (f_2(x)-w)^2}\\ &= \sqrt{(x^2 - 2zx + z^2) + ((ax^2)^2 - 2 awx^2 + w^2)}\\ &= \sqrt{a^2x^4 + (1- 2 aw)x^2 +(- 2z)x + z^2 + w^2}\\ 0 &\stackrel{!}{=} \Big(\big(d_{P, {f_2}}(x)\big)^2\Big)' \\