2
0
Fork 0
mirror of https://github.com/MartinThoma/LaTeX-examples.git synced 2025-04-26 06:48:04 +02:00
This commit is contained in:
Martin Thoma 2013-06-29 10:14:22 +02:00
parent 3cfc9d9969
commit 86ab5dfa97
16 changed files with 212 additions and 136 deletions

View file

@ -0,0 +1,36 @@
SOURCE = Vertex-coloring-brute-force
DELAY = 80
DENSITY = 300
WIDTH = 512
make:
pdflatex $(SOURCE).tex -output-format=pdf
pdflatex $(SOURCE).tex -output-format=pdf
make clean
clean:
rm -rf $(TARGET) *.class *.html *.log *.aux *.data *.gnuplot
gif:
pdfcrop $(SOURCE).pdf
convert -verbose -delay $(DELAY) -loop 0 -density $(DENSITY) $(SOURCE)-crop.pdf $(SOURCE).gif
make clean
png:
make
make svg
inkscape $(SOURCE).svg -w $(WIDTH) --export-png=$(SOURCE).png
transparentGif:
convert $(SOURCE).pdf -transparent white result.gif
make clean
svg:
make
#inkscape $(SOURCE).pdf --export-plain-svg=$(SOURCE).svg
pdf2svg $(SOURCE).pdf $(SOURCE).svg
# Necessary, as pdf2svg does not always create valid svgs:
inkscape $(SOURCE).svg --export-plain-svg=$(SOURCE).svg
rsvg-convert -a -w $(WIDTH) -f svg $(SOURCE).svg -o $(SOURCE)2.svg
inkscape $(SOURCE)2.svg --export-plain-svg=$(SOURCE).svg
rm $(SOURCE)2.svg

Binary file not shown.

After

Width:  |  Height:  |  Size: 31 KiB

View file

@ -0,0 +1,38 @@
\documentclass{article}
\usepackage[pdftex,active,tightpage]{preview}
\setlength\PreviewBorder{2mm}
\usepackage[utf8]{inputenc} % this is needed for umlauts
\usepackage[ngerman]{babel} % this is needed for umlauts
\usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
\usepackage{amssymb,amsmath,amsfonts} % nice math rendering
\usepackage{braket} % needed for \Set
\usepackage{algorithm,algpseudocode}
\renewcommand{\thealgorithm}{3} %disable numbers for algorithm
\begin{document}
\begin{preview}
\begin{algorithm}[H]
\begin{algorithmic}
\Require $G = (V, E)$ an undirected graph
\State $n \gets |V|$
\State Give all vertices an index $1 \leq i \leq n$ that defines an order
\For{$i \in 1, \dots, n$}
\State $v_i$.color $\gets 0$
\EndFor
\\
\If{$n==1$}
\State \Return
\Else
\For{$maxColors \in 2, \dots, n$}
\While{$G$ is not properly colored and not all vertices have color $(maxColors-1)$}
\State $(v_1 v_2 \dots v_n) \gets (v_1 v_2 \dots v_n) + 1$ \Comment{count up in base $maxColor$}
\EndWhile
\EndFor
\EndIf
\end{algorithmic}
\caption{Find a vertex coloring for $G$ with brute force}
\label{alg:vertexColoring}
\end{algorithm}
\end{preview}
\end{document}

View file

@ -0,0 +1,36 @@
\documentclass{article}
\usepackage[pdftex,active,tightpage]{preview}
\setlength\PreviewBorder{2mm}
\usepackage[utf8]{inputenc} % this is needed for umlauts
\usepackage[ngerman]{babel} % this is needed for umlauts
\usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
\usepackage{amssymb,amsmath,amsfonts} % nice math rendering
\usepackage{braket} % needed for \Set
\usepackage{algorithm,algpseudocode}
\begin{document}
\begin{preview}
\begin{algorithm}[H]
\begin{algorithmic}
\Require $G = (V, E)$ an undirected graph
\State $n \gets |V|$
\State Give all vertices an index $1 \leq i \leq n$ that defines an order
\For{$i \in 1, \dots, n$}
\State $v_i$.color $\gets 1$
\EndFor
\\
\For{$i \in 1, \dots, n$}
\For{$j \in i+1, \dots, n$}
\If{$\Set{v_i, v_j} \in E \land v_i.\text{color} = v_j.\text{color}$}
\State $v_j.color \gets v_j.color + 1$
\EndIf
\EndFor
\EndFor
\end{algorithmic}
\caption{Find a vertex coloring for $G$}
\label{alg:vertexColoring}
\end{algorithm}
\end{preview}
\end{document}

View file

@ -0,0 +1,39 @@
\documentclass{article}
\usepackage[pdftex,active,tightpage]{preview}
\setlength\PreviewBorder{2mm}
\usepackage[utf8]{inputenc} % this is needed for umlauts
\usepackage[ngerman]{babel} % this is needed for umlauts
\usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
\usepackage{amssymb,amsmath,amsfonts} % nice math rendering
\usepackage{braket} % needed for \Set
\usepackage{algorithm,algpseudocode}
\renewcommand{\thealgorithm}{2} %disable numbers for algorithm
\begin{document}
\begin{preview}
\begin{algorithm}[H]
\begin{algorithmic}
\Require $G = (V, E)$ an undirected graph
\State $n \gets |V|$
\State Give all vertices an index $1 \leq i \leq n$ that defines an order
\For{$i \in 1, \dots, n$}
\State $v_i$.color $\gets 1$
\EndFor
\\
\For{$i \in 1, \dots, n$}
\State $possible \gets \Set{1, \dots, n}$
\For{$j \in i+1, \dots, n$}
\If{$\Set{v_i, v_j} \in E$}
\State $possible \gets possible \setminus \Set{v_j.\text{color}}$
\EndIf
\EndFor
\State $v_i$.color $\gets \min(possible)$
\EndFor
\end{algorithmic}
\caption{Find a vertex coloring for $G$}
\label{alg:vertexColoring}
\end{algorithm}
\end{preview}
\end{document}

Binary file not shown.

After

Width:  |  Height:  |  Size: 26 KiB