mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-26 06:48:04 +02:00
Triangulierung des Torus
This commit is contained in:
parent
ad0c3c4700
commit
84416324f5
24 changed files with 548 additions and 0 deletions
Binary file not shown.
|
@ -871,6 +871,40 @@ Differenzierbare Mannigfaltigkeiten der Klasse $C^\infty$ werden auch
|
|||
Dann heißt $h$ eine \textbf{Triangulierung} von $X$.
|
||||
\end{definition}
|
||||
|
||||
\begin{beispiel}[Triangulierung des Torus]\xindex{Torus}%
|
||||
Für eine Triangulierung des Torus werden mindestens 14 Dreiecke benötigt.
|
||||
Beispiele für fehlerhafte \enquote{Triangulierungen} sind in \cref{fig:torus-triangulierung-fails}
|
||||
zu sehen. Korrekte Triangulierungen sind in \cref{fig:torus-triangulierung}.
|
||||
|
||||
\begin{figure}[htp]
|
||||
\centering
|
||||
\subfloat[Die beiden markierten Dreiecke schneiden sich im Mittelpunkt und in einer Seite.]{
|
||||
\resizebox{0.45\linewidth}{!}{\input{figures/torus-invalid-triangulation-1.tex}}
|
||||
\label{fig:torus-triangulierung-fail-1}
|
||||
}%
|
||||
\subfloat[Die beiden markierten Dreiecke schneiden sich im Mittelpunkt und außen.]{
|
||||
\resizebox{0.45\linewidth}{!}{\input{figures/torus-invalid-triangulation-2.tex}}
|
||||
\label{fig:torus-triangulierung-fail-2}
|
||||
}%
|
||||
\label{fig:torus-triangulierung-fails}
|
||||
\caption{Fehlerhafte Triangulierungen}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[htp]
|
||||
\centering
|
||||
\subfloat[Einfache Triangulierung]{
|
||||
\resizebox{0.45\linewidth}{!}{\input{figures/torus-triangulation.tex}}
|
||||
\label{fig:torus-triangulierung-simple}
|
||||
}%
|
||||
\subfloat[Minimale Triangulierung]{
|
||||
\resizebox{0.45\linewidth}{!}{\input{figures/torus-triangulation-minimal.tex}}
|
||||
\label{fig:torus-triangulierung-minimal}
|
||||
}%
|
||||
\label{fig:torus-triangulierung}
|
||||
\caption{Triangulierungen des Torus}
|
||||
\end{figure}
|
||||
\end{beispiel}
|
||||
|
||||
\begin{satz}[Eulersche Polyederformel]\xindex{Eulersche Polyederformel}%
|
||||
Sei $P$ ein konvexes Polyeder in $\mdr^3$, d.~h. $\partial P$ ist
|
||||
ein 2-dimensionaler Simplizialkomplex, sodass gilt:
|
||||
|
|
Binary file not shown.
32
documents/GeoTopo/figures/torus-invalid-triangulation-1.tex
Normal file
32
documents/GeoTopo/figures/torus-invalid-triangulation-1.tex
Normal file
|
@ -0,0 +1,32 @@
|
|||
\begin{tikzpicture}
|
||||
\node (a) at (0,0) {};
|
||||
\node (b) at (1,0) {};
|
||||
\node (c) at (1,1) {};
|
||||
\node (d) at (0,1) {};
|
||||
\coordinate (m) at ($(a)!0.5!(c)$);
|
||||
\coordinate (ab) at ($(a)!0.5!(b)$);
|
||||
\coordinate (bc) at ($(b)!0.5!(c)$);
|
||||
\coordinate (cd) at ($(c)!0.5!(d)$);
|
||||
\coordinate (ad) at ($(a)!0.5!(d)$);
|
||||
\draw[pattern=north west lines] (d.center) -- (ad.center) -- (m.center);
|
||||
\draw[pattern=dots] (m.center) -- (bc.center) -- (c.center);
|
||||
\draw (a.center) -- (b.center) -- (c.center) -- (d.center) -- cycle;
|
||||
\begin{scope}[decoration={
|
||||
markings,
|
||||
mark=at position 0.6 with {\arrow{>}}}
|
||||
]
|
||||
\draw[postaction={decorate}] (a.center) -- (b.center);
|
||||
\draw[postaction={decorate}] (d.center) -- (c.center);
|
||||
\end{scope}
|
||||
|
||||
\begin{scope}[decoration={
|
||||
markings,
|
||||
mark=at position 0.55 with {\arrow{>>}}}
|
||||
]
|
||||
\draw[postaction={decorate}] (b.center) -- (c.center);
|
||||
\draw[postaction={decorate}] (a.center) -- (d.center);
|
||||
\end{scope}
|
||||
\draw (ab.center) -- (cd.center);
|
||||
\draw (a.center) -- (c.center);
|
||||
\draw (b.center) -- (d.center);
|
||||
\end{tikzpicture}
|
39
documents/GeoTopo/figures/torus-invalid-triangulation-2.tex
Normal file
39
documents/GeoTopo/figures/torus-invalid-triangulation-2.tex
Normal file
|
@ -0,0 +1,39 @@
|
|||
\begin{tikzpicture}
|
||||
\node (a) at (0,0) {};
|
||||
\node (b) at (1,0) {};
|
||||
\node (c) at (1,1) {};
|
||||
\node (d) at (0,1) {};
|
||||
\coordinate (m) at ($(a)!0.5!(c)$);
|
||||
\coordinate (ab) at ($(a)!0.5!(b)$);
|
||||
\coordinate (bc) at ($(b)!0.5!(c)$);
|
||||
\coordinate (cd) at ($(c)!0.5!(d)$);
|
||||
\coordinate (ad) at ($(a)!0.5!(d)$);
|
||||
\coordinate (left-intersection) at ($(m)!0.5!(d)$);
|
||||
\coordinate (right-intersection) at ($(m)!0.5!(c)$);
|
||||
\draw[pattern=north west lines] (ad.center) -- (left-intersection.center) -- (m.center);
|
||||
\draw[pattern=dots] (m.center) -- (right-intersection.center) -- (bc.center);
|
||||
\draw (a.center) -- (b.center) -- (c.center) -- (d.center) -- cycle;
|
||||
\draw (bc.center) -- (ad.center);
|
||||
\draw (cd.center) -- (ad.center);
|
||||
\draw (cd.center) -- (bc.center);
|
||||
\draw (ad.center) -- (ab.center);
|
||||
\draw (ab.center) -- (bc.center);
|
||||
\begin{scope}[decoration={
|
||||
markings,
|
||||
mark=at position 0.6 with {\arrow{>}}}
|
||||
]
|
||||
\draw[postaction={decorate}] (a.center) -- (b.center);
|
||||
\draw[postaction={decorate}] (d.center) -- (c.center);
|
||||
\end{scope}
|
||||
|
||||
\begin{scope}[decoration={
|
||||
markings,
|
||||
mark=at position 0.55 with {\arrow{>>}}}
|
||||
]
|
||||
\draw[postaction={decorate}] (b.center) -- (c.center);
|
||||
\draw[postaction={decorate}] (a.center) -- (d.center);
|
||||
\end{scope}
|
||||
\draw (ab.center) -- (cd.center);
|
||||
\draw (a.center) -- (c.center);
|
||||
\draw (b.center) -- (d.center);
|
||||
\end{tikzpicture}
|
53
documents/GeoTopo/figures/torus-triangulation-minimal.tex
Normal file
53
documents/GeoTopo/figures/torus-triangulation-minimal.tex
Normal file
|
@ -0,0 +1,53 @@
|
|||
\begin{tikzpicture}
|
||||
\node (a) at (0,0) {};
|
||||
\node (b) at (1,0) {};
|
||||
\node (c) at (1,1) {};
|
||||
\node (d) at (0,1) {};
|
||||
\coordinate (m) at ($(a)!0.5!(c)$);
|
||||
\coordinate (ab2) at ($(a)!0.5!(b)$);
|
||||
\coordinate (ab1) at ($(a)!0.5!(ab2)$);
|
||||
\coordinate (ab3) at ($(b)!0.5!(ab2)$);
|
||||
\coordinate (bc2) at ($(b)!0.5!(c)$);
|
||||
\coordinate (bc1) at ($(b)!0.5!(bc2)$);
|
||||
\coordinate (bc3) at ($(c)!0.5!(bc2)$);
|
||||
\coordinate (cd2) at ($(c)!0.5!(d)$);
|
||||
\coordinate (cd1) at ($(c)!0.5!(cd2)$);
|
||||
\coordinate (cd3) at ($(d)!0.5!(cd2)$);
|
||||
\coordinate (ad2) at ($(a)!0.5!(d)$);
|
||||
\coordinate (ad1) at ($(a)!0.5!(ad2)$);
|
||||
\coordinate (ad3) at ($(d)!0.5!(ad2)$);
|
||||
\coordinate (corner1) at ($(a)!0.25!(bc3)$);
|
||||
\coordinate (corner2) at ($(c)!0.25!(ad1)$);
|
||||
\draw (a.center) -- (b.center) -- (c.center) -- (d.center) -- cycle;
|
||||
%horizontal
|
||||
\draw (a.center) -- (bc3.center);
|
||||
\draw (cd3.center) -- (ad3.center);
|
||||
\draw (ab3.center) -- (bc1.center);
|
||||
\draw (cd3.center) -- (ad1.center);
|
||||
\draw (ab3.center) -- (bc3.center);
|
||||
\draw (ab1.center) -- (corner1.center);
|
||||
\draw (ad1.center) -- (corner1.center);
|
||||
\draw (ab3.center) -- (corner1.center);
|
||||
\draw (c.center) -- (corner2.center);
|
||||
\draw (cd1.center) -- (corner2.center);
|
||||
\draw (bc3.center) -- (corner2.center);
|
||||
\draw (cd3.center) -- (corner2.center);
|
||||
\draw (corner1.center) -- (corner2.center);
|
||||
\draw (ad1.center) -- (corner2.center);
|
||||
|
||||
\begin{scope}[decoration={
|
||||
markings,
|
||||
mark=at position 0.6 with {\arrow{>}}}
|
||||
]
|
||||
\draw[postaction={decorate}] (a.center) -- (b.center);
|
||||
\draw[postaction={decorate}] (d.center) -- (c.center);
|
||||
\end{scope}
|
||||
|
||||
\begin{scope}[decoration={
|
||||
markings,
|
||||
mark=at position 0.55 with {\arrow{>>}}}
|
||||
]
|
||||
\draw[postaction={decorate}] (b.center) -- (c.center);
|
||||
\draw[postaction={decorate}] (a.center) -- (d.center);
|
||||
\end{scope}
|
||||
\end{tikzpicture}
|
51
documents/GeoTopo/figures/torus-triangulation.tex
Normal file
51
documents/GeoTopo/figures/torus-triangulation.tex
Normal file
|
@ -0,0 +1,51 @@
|
|||
\begin{tikzpicture}
|
||||
\node (a) at (0,0) {};
|
||||
\node (b) at (1,0) {};
|
||||
\node (c) at (1,1) {};
|
||||
\node (d) at (0,1) {};
|
||||
\coordinate (m) at ($(a)!0.5!(c)$);
|
||||
\coordinate (ab2) at ($(a)!0.5!(b)$);
|
||||
\coordinate (ab1) at ($(a)!0.5!(ab2)$);
|
||||
\coordinate (ab3) at ($(b)!0.5!(ab2)$);
|
||||
\coordinate (bc2) at ($(b)!0.5!(c)$);
|
||||
\coordinate (bc1) at ($(b)!0.5!(bc2)$);
|
||||
\coordinate (bc3) at ($(c)!0.5!(bc2)$);
|
||||
\coordinate (cd2) at ($(c)!0.5!(d)$);
|
||||
\coordinate (cd1) at ($(c)!0.5!(cd2)$);
|
||||
\coordinate (cd3) at ($(d)!0.5!(cd2)$);
|
||||
\coordinate (ad2) at ($(a)!0.5!(d)$);
|
||||
\coordinate (ad1) at ($(a)!0.5!(ad2)$);
|
||||
\coordinate (ad3) at ($(d)!0.5!(ad2)$);
|
||||
\draw (a.center) -- (b.center) -- (c.center) -- (d.center) -- cycle;
|
||||
%horizontal
|
||||
\draw (bc1.center) -- (ad1.center);
|
||||
\draw (bc2.center) -- (ad2.center);
|
||||
\draw (bc3.center) -- (ad3.center);
|
||||
%vertical
|
||||
\draw (ab1.center) -- (cd3.center);
|
||||
\draw (ab2.center) -- (cd2.center);
|
||||
\draw (ab3.center) -- (cd1.center);
|
||||
%diagonal
|
||||
\draw (ad3.center) -- (cd3.center);
|
||||
\draw (ad2.center) -- (cd2.center);
|
||||
\draw (ad1.center) -- (cd1.center);
|
||||
\draw (a.center) -- (c.center);
|
||||
\draw (ab1.center) -- (bc3.center);
|
||||
\draw (ab2.center) -- (bc2.center);
|
||||
\draw (ab3.center) -- (bc1.center);
|
||||
\begin{scope}[decoration={
|
||||
markings,
|
||||
mark=at position 0.6 with {\arrow{>}}}
|
||||
]
|
||||
\draw[postaction={decorate}] (a.center) -- (b.center);
|
||||
\draw[postaction={decorate}] (d.center) -- (c.center);
|
||||
\end{scope}
|
||||
|
||||
\begin{scope}[decoration={
|
||||
markings,
|
||||
mark=at position 0.55 with {\arrow{>>}}}
|
||||
]
|
||||
\draw[postaction={decorate}] (b.center) -- (c.center);
|
||||
\draw[postaction={decorate}] (a.center) -- (d.center);
|
||||
\end{scope}
|
||||
\end{tikzpicture}
|
Binary file not shown.
Loading…
Add table
Add a link
Reference in a new issue