2
0
Fork 0
mirror of https://github.com/MartinThoma/LaTeX-examples.git synced 2025-04-26 06:48:04 +02:00

Abschnitt über Arithmetik in Prolog hinzugefügt; misc

This commit is contained in:
Martin Thoma 2014-03-23 19:28:44 +01:00
parent 82dd24d55b
commit 80e8df59d6
20 changed files with 194 additions and 27 deletions

View file

@ -69,23 +69,29 @@ Die Funktionsapplikation sei linksassoziativ. Es gilt also:
\begin{definition}[$\beta$-Äquivalenz]\xindex{Reduktion!Beta ($\beta$)}\xindex{Äquivalenz!Beta ($\beta$)}%
Eine $\beta$-Reduktion ist die Funktionsanwendung auf einen Redex:
\[(\lambda x. t_1) t_2 \Rightarrow t_1 [x \mapsto t_2]\]
\[(\lambda x. t_1)\ t_2 \Rightarrow t_1 [x \mapsto t_2]\]
\end{definition}
\begin{beispiel}[$\beta$-Äquivalenz]
\begin{defenum}
\item $(\lambda x.x) y \overset{\beta}{\Rightarrow} x[x \mapsto y] = y$
\item $(\lambda x. x (\lambda x. x)) (y z) \overset{\beta}{\Rightarrow} (x(\lambda x. x))[x \mapsto y z] (y z) (\lambda x. x)$
\item $(\lambda x.\ x)\ y \overset{\beta}{\Rightarrow} x[x \mapsto y] = y$
\item $(\lambda x.\ x\ (\lambda x.\ x)) (y\ z) \overset{\beta}{\Rightarrow} (x\ (\lambda x.\ x))[x \mapsto y\ z] (y\ z) (\lambda x.\ x)$
\end{defenum}
\end{beispiel}
\begin{definition}[$\eta$-Äquivalenz]\xindex{Reduktion!Eta ($\eta$)}\xindex{Äquivalenz!Eta ($\eta$)}%
Zwei Terme $\lambda x. f~x$ und $f$ heißen $\eta$-Äquivalent, wenn
$x$ nicht freie Variable von $f$ ist.
\begin{definition}[$\eta$-Äquivalenz\footnote{Folie 158}]\xindex{Reduktion!Eta ($\eta$)}\xindex{Äquivalenz!Eta ($\eta$)}%
Die Terme $\lambda x. f~x$ und $f$ heißen $\eta$-Äquivalent, wenn $x \notin FV(f)$ gilt.
Man schreibt: $\lambda x. f~x \overset{\eta}{=} f$.
\end{definition}
\begin{beispiel}[$\eta$-Äquivalenz]
TODO
\begin{beispiel}[$\eta$-Äquivalenz\footnote{Folie 158}]%
\begin{align*}
\lambda x.\ \lambda y.\ f\ z\ x\ y &\overset{\eta}{=} \lambda x.\ f\ z\ x\\
f\ z &\overset{\eta}{=} \lambda x.\ f\ z\ x\\
\lambda x.\ x &\overset{\eta}{=} \lambda x.\ (\lambda x.\ x)\ x\\
\lambda x.\ f\ x\ x &\overset{\eta}{\neq} f\ x
\end{align*}
\end{beispiel}
\index{Reduktion|)}
@ -365,4 +371,11 @@ und
\[\ABS \frac{\Gamma, x: \tau_1 \vdash t: \tau_2 \;\;\; \tau_1 \text{ kein Typschema}}{\Gamma \vdash \lambda x. t: \tau_1 \rightarrow \tau_2}\]
\todo[inline]{Folie 208ff}
\todo[inline]{Folie 208ff}
\section{Literatur}
\begin{itemize}
\item \url{http://c2.com/cgi/wiki?FreeVariable}
\item \url{http://www.lambda-bound.com/book/lambdacalc/node9.html}
\end{itemize}