From 7b77fbd58531ee215052df4452237680d0a202c5 Mon Sep 17 00:00:00 2001 From: Martin Thoma Date: Sat, 20 Oct 2012 07:56:26 +0200 Subject: [PATCH] misc --- documents/Analysis III/Analysis-III.tex | 6 ++--- math/strange-signs/Makefile | 8 ++++++ math/strange-signs/strange-signs.tex | 34 +++++++++++++++++++++++++ 3 files changed, 45 insertions(+), 3 deletions(-) create mode 100644 math/strange-signs/Makefile create mode 100644 math/strange-signs/strange-signs.tex diff --git a/documents/Analysis III/Analysis-III.tex b/documents/Analysis III/Analysis-III.tex index fae5d5d..baf5a9d 100644 --- a/documents/Analysis III/Analysis-III.tex +++ b/documents/Analysis III/Analysis-III.tex @@ -124,7 +124,7 @@ $f: X\to Y,\; g:Y\to Z$ Abbildungen. \end{definition} \begin{satz} - Sei $\emptyset \neq X \subseteq \mdr^n \; A \subseteq X$ und + Sei $\emptyset \neq X \subseteq \mdr^n,\; A \subseteq X$ und $f: X \rightarrow \mdr^n$. \begin{enumerate} @@ -156,8 +156,8 @@ In diesem Paragraphen sei $X \neq \emptyset$ eine Menge. \textbf{$\sigma$-Algebra} auf $X$, wenn gilt: \begin{enumerate} \item[($\sigma_1$)] $X\in\fa$ - \item[($\sigma_2$)] Ist $A\in\fa$, so ist auch $A^c\in\fa$. - \item[($\sigma_3$)] Ist $(A_j)$ eine Folge in $\fa$, so ist + \item[($\sigma_2$)] $A\in\fa \implies A^c\in\fa$ + \item[($\sigma_3$)] $(A_j)$ ist eine Folge in $\fa \implies$ $\bigcup A_j\in\fa$. \end{enumerate} \end{definition} diff --git a/math/strange-signs/Makefile b/math/strange-signs/Makefile new file mode 100644 index 0000000..a99deac --- /dev/null +++ b/math/strange-signs/Makefile @@ -0,0 +1,8 @@ +SOURCE = strange-signs + +make: + pdflatex $(SOURCE).tex -output-format=pdf + make clean + +clean: + rm -rf $(TARGET) *.class *.html *.log *.aux diff --git a/math/strange-signs/strange-signs.tex b/math/strange-signs/strange-signs.tex new file mode 100644 index 0000000..82b3f5c --- /dev/null +++ b/math/strange-signs/strange-signs.tex @@ -0,0 +1,34 @@ +\documentclass[a4paper,9pt]{scrartcl} +\usepackage[ngerman]{babel} +\usepackage[utf8]{inputenc} +\usepackage{amssymb,amsmath} +\usepackage{geometry} +\geometry{a4paper,left=18mm,right=18mm, top=2cm, bottom=2cm} + +\begin{document} +\section{mathbb} +\begin{tabular}{|c|c||c|c||c|c||c|c||c|c||c|c||c|c||c|c||c|c||c|c||c|c||c|c||c|c|} + \hline + A & $\mathbb{A}$ & B & $\mathbb{B}$ & C & $\mathbb{C}$ & D & $\mathbb{D}$ & E & $\mathbb{E}$ & F & $\mathbb{F}$ & G & $\mathbb{G}$ & H & $\mathbb{H}$ & I & $\mathbb{I}$ & J & $\mathbb{J}$ & K & $\mathbb{K}$ & L & $\mathbb{L}$ & M & $\mathbb{M}$\\ + \hline + N & $\mathbb{N}$ & O & $\mathbb{O}$ & P & $\mathbb{P}$ & Q & $\mathbb{Q}$ & R & $\mathbb{R}$ & S & $\mathbb{S}$ & T & $\mathbb{T}$ & U & $\mathbb{U}$ & V & $\mathbb{V}$ & W & $\mathbb{W}$ & X & $\mathbb{X}$ & Y & $\mathbb{Y}$ & Z & $\mathbb{Z}$\\ + \hline +\end{tabular} + +\section{mathfrak} +\begin{tabular}{|c|c||c|c||c|c||c|c||c|c||c|c||c|c||c|c||c|c||c|c||c|c||c|c||c|c|} + \hline + A & $\mathfrak{A}$ & B & $\mathfrak{B}$ & C & $\mathfrak{C}$ & D & $\mathfrak{D}$ & E & $\mathfrak{E}$ & F & $\mathfrak{F}$ & G & $\mathfrak{G}$ & H & $\mathfrak{H}$ & I & $\mathfrak{I}$ & J & $\mathfrak{J}$ & K & $\mathfrak{K}$ & L & $\mathfrak{L}$ & M & $\mathfrak{M}$\\ + \hline + N & $\mathfrak{N}$ & O & $\mathfrak{O}$ & P & $\mathfrak{P}$ & Q & $\mathfrak{Q}$ & R & $\mathfrak{R}$ & S & $\mathfrak{S}$ & T & $\mathfrak{T}$ & U & $\mathfrak{U}$ & V & $\mathfrak{V}$ & W & $\mathfrak{W}$ & X & $\mathfrak{X}$ & Y & $\mathfrak{Y}$ & Z & $\mathfrak{Z}$\\ + \hline +\end{tabular} + +\section{mathcal} +\begin{tabular}{|c|c||c|c||c|c||c|c||c|c||c|c||c|c||c|c||c|c||c|c||c|c||c|c||c|c|} + \hline + A & $\mathcal{A}$ & B & $\mathcal{B}$ & C & $\mathcal{C}$ & D & $\mathcal{D}$ & E & $\mathcal{E}$ & F & $\mathcal{F}$ & G & $\mathcal{G}$ & H & $\mathcal{H}$ & I & $\mathcal{I}$ & J & $\mathcal{J}$ & K & $\mathcal{K}$ & L & $\mathcal{L}$ & M & $\mathcal{M}$\\ + N & $\mathcal{N}$ & O & $\mathcal{O}$ & P & $\mathcal{P}$ & Q & $\mathcal{Q}$ & R & $\mathcal{R}$ & S & $\mathcal{S}$ & T & $\mathcal{T}$ & U & $\mathcal{U}$ & V & $\mathcal{V}$ & W & $\mathcal{W}$ & X & $\mathcal{X}$ & Y & $\mathcal{Y}$ & Z & $\mathcal{Z}$\\ + \hline +\end{tabular} +\end{document}