2
0
Fork 0
mirror of https://github.com/MartinThoma/LaTeX-examples.git synced 2025-04-26 06:48:04 +02:00

Remove trailing spaces

The commands

find . -type f -name '*.md' -exec sed --in-place 's/[[:space:]]\+$//' {} \+

and

find . -type f -name '*.tex' -exec sed --in-place 's/[[:space:]]\+$//' {} \+

were used to do so.
This commit is contained in:
Martin Thoma 2015-10-14 14:25:34 +02:00
parent c578b25d2f
commit 7740f0147f
538 changed files with 3496 additions and 3496 deletions

View file

@ -1,9 +1,9 @@
\chapter{Constant functions}
\section{Defined on $\mdr$}
\begin{lemma}
Let $f:\mdr \rightarrow \mdr$, $f(x) := c$ with $c \in \mdr$ be a constant function.
Let $f:\mdr \rightarrow \mdr$, $f(x) := c$ with $c \in \mdr$ be a constant function.
Then $(x_P, f(x_P))$ is the only point on the graph of $f$ with
Then $(x_P, f(x_P))$ is the only point on the graph of $f$ with
minimal distance to $P$.
\end{lemma}
@ -42,7 +42,7 @@ The situation can be seen in Figure~\ref{fig:constant-min-distance}.
\addlegendentry{$f(x)=1$}
\addlegendentry{$g(x)=2$}
\addlegendentry{$h(x)=3$}
\end{axis}
\end{axis}
\end{tikzpicture}
\caption{Three constant functions and their points with minimal distance}
\label{fig:constant-min-distance}
@ -69,8 +69,8 @@ This result means:
\section{Defined on a closed interval $[a,b] \subseteq \mdr$}
\begin{theorem}[Solution formula for constant functions]
Let $f:[a,b] \rightarrow \mdr$, $f(x) := c$ with $a,b,c \in \mdr$ and
$a \leq b$ be a constant function.
Let $f:[a,b] \rightarrow \mdr$, $f(x) := c$ with $a,b,c \in \mdr$ and
$a \leq b$ be a constant function.
Then the point $(x, f(x))$ of $f$ with minimal distance to $P$ is
given by:
@ -119,7 +119,7 @@ given by:
\addlegendentry{$f(x)=1, D = [-5,-2]$}
\addlegendentry{$g(x)=1.5, D = [-1,3]$}
\addlegendentry{$h(x)=3, D = [3,5]$}
\end{axis}
\end{axis}
\end{tikzpicture}
\caption{Three constant functions and their points with minimal distance}
\label{fig:constant-min-distance-closed-intervall}