mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-19 11:38:05 +02:00
presentations/causality-presentation: Added
This commit is contained in:
parent
cb932a6755
commit
757e092da5
13 changed files with 1077 additions and 0 deletions
127
presentations/causality-presentation/.gitignore
vendored
Normal file
127
presentations/causality-presentation/.gitignore
vendored
Normal file
|
@ -0,0 +1,127 @@
|
||||||
|
## Core latex/pdflatex auxiliary files:
|
||||||
|
*.aux
|
||||||
|
*.lof
|
||||||
|
*.log
|
||||||
|
*.lot
|
||||||
|
*.fls
|
||||||
|
*.out
|
||||||
|
*.toc
|
||||||
|
|
||||||
|
## Intermediate documents:
|
||||||
|
*.dvi
|
||||||
|
*-converted-to.*
|
||||||
|
# these rules might exclude image files for figures etc.
|
||||||
|
# *.ps
|
||||||
|
# *.eps
|
||||||
|
# *.pdf
|
||||||
|
|
||||||
|
## Bibliography auxiliary files (bibtex/biblatex/biber):
|
||||||
|
*.bbl
|
||||||
|
*.bcf
|
||||||
|
*.blg
|
||||||
|
*-blx.aux
|
||||||
|
*-blx.bib
|
||||||
|
*.brf
|
||||||
|
*.run.xml
|
||||||
|
|
||||||
|
## Build tool auxiliary files:
|
||||||
|
*.fdb_latexmk
|
||||||
|
*.synctex
|
||||||
|
*.synctex.gz
|
||||||
|
*.synctex.gz(busy)
|
||||||
|
*.pdfsync
|
||||||
|
|
||||||
|
## Auxiliary and intermediate files from other packages:
|
||||||
|
|
||||||
|
# algorithms
|
||||||
|
*.alg
|
||||||
|
*.loa
|
||||||
|
|
||||||
|
# achemso
|
||||||
|
acs-*.bib
|
||||||
|
|
||||||
|
# amsthm
|
||||||
|
*.thm
|
||||||
|
|
||||||
|
# beamer
|
||||||
|
*.nav
|
||||||
|
*.snm
|
||||||
|
*.vrb
|
||||||
|
|
||||||
|
#(e)ledmac/(e)ledpar
|
||||||
|
*.end
|
||||||
|
*.[1-9]
|
||||||
|
*.[1-9][0-9]
|
||||||
|
*.[1-9][0-9][0-9]
|
||||||
|
*.[1-9]R
|
||||||
|
*.[1-9][0-9]R
|
||||||
|
*.[1-9][0-9][0-9]R
|
||||||
|
*.eledsec[1-9]
|
||||||
|
*.eledsec[1-9]R
|
||||||
|
*.eledsec[1-9][0-9]
|
||||||
|
*.eledsec[1-9][0-9]R
|
||||||
|
*.eledsec[1-9][0-9][0-9]
|
||||||
|
*.eledsec[1-9][0-9][0-9]R
|
||||||
|
|
||||||
|
# glossaries
|
||||||
|
*.acn
|
||||||
|
*.acr
|
||||||
|
*.glg
|
||||||
|
*.glo
|
||||||
|
*.gls
|
||||||
|
|
||||||
|
# gnuplottex
|
||||||
|
*-gnuplottex-*
|
||||||
|
|
||||||
|
# hyperref
|
||||||
|
*.brf
|
||||||
|
|
||||||
|
# knitr
|
||||||
|
*-concordance.tex
|
||||||
|
*.tikz
|
||||||
|
*-tikzDictionary
|
||||||
|
|
||||||
|
# listings
|
||||||
|
*.lol
|
||||||
|
|
||||||
|
# makeidx
|
||||||
|
*.idx
|
||||||
|
*.ilg
|
||||||
|
*.ind
|
||||||
|
*.ist
|
||||||
|
|
||||||
|
# minitoc
|
||||||
|
*.maf
|
||||||
|
*.mtc
|
||||||
|
*.mtc0
|
||||||
|
|
||||||
|
# minted
|
||||||
|
_minted*
|
||||||
|
*.pyg
|
||||||
|
|
||||||
|
# morewrites
|
||||||
|
*.mw
|
||||||
|
|
||||||
|
# nomencl
|
||||||
|
*.nlo
|
||||||
|
|
||||||
|
# sagetex
|
||||||
|
*.sagetex.sage
|
||||||
|
*.sagetex.py
|
||||||
|
*.sagetex.scmd
|
||||||
|
|
||||||
|
# sympy
|
||||||
|
*.sout
|
||||||
|
*.sympy
|
||||||
|
sympy-plots-for-*.tex/
|
||||||
|
|
||||||
|
# todonotes
|
||||||
|
*.tdo
|
||||||
|
|
||||||
|
# xindy
|
||||||
|
*.xdy
|
||||||
|
|
||||||
|
# WinEdt
|
||||||
|
*.bak
|
||||||
|
*.sav
|
||||||
|
.ipynb_checkpoints/
|
10
presentations/causality-presentation/Makefile
Normal file
10
presentations/causality-presentation/Makefile
Normal file
|
@ -0,0 +1,10 @@
|
||||||
|
SOURCE = interventions
|
||||||
|
|
||||||
|
make:
|
||||||
|
#latexmk -pdf -pdflatex="pdflatex -interactive=nonstopmode" -use-make $(SOURCE).tex
|
||||||
|
pdflatex -shell-escape $(SOURCE).tex -output-format=pdf #shellescape wird fürs logo benötigt
|
||||||
|
pdflatex -shell-escape $(SOURCE).tex -output-format=pdf # nochmaliges ausführen wegen Inhaltsverzeichnissen
|
||||||
|
make clean
|
||||||
|
|
||||||
|
clean:
|
||||||
|
rm -rf $(TARGET) *.class *.html *.log *.aux *.out *.glo *.glg *.gls *.ist *.xdy *.1 *.toc *.snm *.nav *.vrb *.fls *.fdb_latexmk *.pyg
|
28
presentations/causality-presentation/README.md
Normal file
28
presentations/causality-presentation/README.md
Normal file
|
@ -0,0 +1,28 @@
|
||||||
|
# Interventions
|
||||||
|
Dieses Repository ist für einen 30-minütigen Vortrag bei einer Sommerakademie.
|
||||||
|
Das Thema lautet "Intervention distribution".
|
||||||
|
|
||||||
|
Die kompilierte PDF kann [hier](https://github.com/MartinThoma/causality-presentation/raw/master/interventions.pdf) herutergeladen werden.
|
||||||
|
|
||||||
|
|
||||||
|
## Given
|
||||||
|
|
||||||
|
* script 2.2. and ex. 3.1.1
|
||||||
|
https://stat.ethz.ch/people/jopeters/index/edit/causalityHomepage/causality_files/scriptChapter1-4.pdf
|
||||||
|
* examples: intervention distribution, simpson's paradox
|
||||||
|
* Block: Causality
|
||||||
|
* Thema: interventions
|
||||||
|
* Nr: 11
|
||||||
|
* Zeit: 30min
|
||||||
|
|
||||||
|
## Plan
|
||||||
|
|
||||||
|
* Einleitung: ca. 5 min
|
||||||
|
* Interventionsverteilung, def: ca. 2 min
|
||||||
|
|
||||||
|
## Fragen
|
||||||
|
|
||||||
|
1. Definition 2.2.1: "The set of noise variables in S now contains both ..."
|
||||||
|
- Soll hier wirklich "S" und nicht "\tilde{S}" stehen?
|
||||||
|
2. Was heißt "full support"?
|
||||||
|
3. A.2: Was ist Q?
|
10
presentations/causality-presentation/backup/Makefile
Normal file
10
presentations/causality-presentation/backup/Makefile
Normal file
|
@ -0,0 +1,10 @@
|
||||||
|
SOURCE = interventions
|
||||||
|
|
||||||
|
make:
|
||||||
|
#latexmk -pdf -pdflatex="pdflatex -interactive=nonstopmode" -use-make $(SOURCE).tex
|
||||||
|
pdflatex -shell-escape $(SOURCE).tex -output-format=pdf #shellescape wird fürs logo benötigt
|
||||||
|
pdflatex -shell-escape $(SOURCE).tex -output-format=pdf # nochmaliges ausführen wegen Inhaltsverzeichnissen
|
||||||
|
make clean
|
||||||
|
|
||||||
|
clean:
|
||||||
|
rm -rf $(TARGET) *.class *.html *.log *.aux *.out *.glo *.glg *.gls *.ist *.xdy *.1 *.toc *.snm *.nav *.vrb *.fls *.fdb_latexmk *.pyg
|
23
presentations/causality-presentation/backup/end.tex
Normal file
23
presentations/causality-presentation/backup/end.tex
Normal file
|
@ -0,0 +1,23 @@
|
||||||
|
%!TEX root = interventions.tex
|
||||||
|
\section{Ende}
|
||||||
|
\subsection{Quellen}
|
||||||
|
\begin{frame}{Quellen}
|
||||||
|
\begin{itemize}
|
||||||
|
\item \href{https://stat.ethz.ch/people/jopeters/index/edit/causalityHomepage/causality_files/scriptChapter1-4.pdf}{Causality, 2015. Jonas Peters.}
|
||||||
|
\end{itemize}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\begin{frame}{Definitionen}
|
||||||
|
\begin{block}{Unabhängigkeit}
|
||||||
|
$X$ und $Y$ sind unabhängig $:\Leftrightarrow p(x, y) = p(x) \cdot p(y) \;\;\;\forall x,y$.
|
||||||
|
|
||||||
|
Man schreibt dann: $X \perp\!\!\!\perp Y$ und andernfalls $X \not\!\perp\!\!\!\perp Y$
|
||||||
|
\end{block}
|
||||||
|
|
||||||
|
\begin{block}{Korrelation}
|
||||||
|
Seien $X$ und $Y$ Zufallsvariablen und
|
||||||
|
\[C(X,Y) := \mathbb{E}((X- \mathbb{E}X) \cdot (Y - \mathbb{E}Y))\]
|
||||||
|
die Kovarianz zwischen $X$ und $Y$. Gilt $C(X, Y) = 0$, so heißen
|
||||||
|
$X$ und $Y$ unkorreliert.
|
||||||
|
\end{block}
|
||||||
|
\end{frame}
|
|
@ -0,0 +1,92 @@
|
||||||
|
\documentclass{beamer}
|
||||||
|
\usetheme{Frankfurt}
|
||||||
|
\usecolortheme{beaver}
|
||||||
|
\definecolor{links}{HTML}{2A1B81}
|
||||||
|
\hypersetup{colorlinks,linkcolor=,urlcolor=links}
|
||||||
|
\usepackage{hyperref}
|
||||||
|
\usepackage[utf8]{inputenc} % this is needed for german umlauts
|
||||||
|
\usepackage[ngerman]{babel} % this is needed for german umlauts
|
||||||
|
\usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
|
||||||
|
\usepackage{braket} % needed for \Set
|
||||||
|
\usepackage{csquotes}
|
||||||
|
\usepackage{enumitem}
|
||||||
|
\setitemize{label=\usebeamerfont*{itemize item}%
|
||||||
|
\usebeamercolor[fg]{itemize item}
|
||||||
|
\usebeamertemplate{itemize item}}
|
||||||
|
\usepackage{amsmath, amssymb}
|
||||||
|
\usepackage{bm}
|
||||||
|
\usepackage{dsfont}
|
||||||
|
\usepackage{nicefrac}
|
||||||
|
\usefonttheme[onlymath]{serif}
|
||||||
|
\usepackage{siunitx} % this package is for units!
|
||||||
|
\sisetup{range-phrase=--, range-units=single}
|
||||||
|
|
||||||
|
\usepackage{booktabs} % for \toprule, \midrule and \bottomrule
|
||||||
|
\selectlanguage{ngerman}
|
||||||
|
|
||||||
|
\usepackage{tikz}
|
||||||
|
\usetikzlibrary{arrows,positioning, calc}
|
||||||
|
|
||||||
|
\setbeamertemplate{navigation symbols}{}
|
||||||
|
\addtobeamertemplate{navigation symbols}{}{%
|
||||||
|
\usebeamerfont{footline}%
|
||||||
|
\usebeamercolor[fg]{footline}%
|
||||||
|
\hspace{1em}%
|
||||||
|
\insertframenumber/\inserttotalframenumber
|
||||||
|
}
|
||||||
|
\makeatletter
|
||||||
|
\setbeamertemplate{footline}
|
||||||
|
{%
|
||||||
|
\pgfuseshading{beamer@barshade}%
|
||||||
|
\ifbeamer@sb@subsection%
|
||||||
|
\vskip-9.75ex%
|
||||||
|
\else%
|
||||||
|
\vskip-7ex%
|
||||||
|
\fi%
|
||||||
|
\begin{beamercolorbox}[ignorebg,ht=2.25ex,dp=3.75ex]{section in head/foot}
|
||||||
|
\insertnavigation{\paperwidth}
|
||||||
|
\end{beamercolorbox}%
|
||||||
|
\ifbeamer@sb@subsection%
|
||||||
|
\begin{beamercolorbox}[ignorebg,ht=2.125ex,dp=1.125ex,%
|
||||||
|
leftskip=.3cm,rightskip=.3cm plus1fil]{subsection in head/foot}
|
||||||
|
\usebeamerfont{subsection in head/foot}\insertsubsectionhead
|
||||||
|
\end{beamercolorbox}%
|
||||||
|
\fi%
|
||||||
|
}%
|
||||||
|
\setbeamertemplate{headline}{%
|
||||||
|
% \hskip1em\usebeamercolor[fg]{navigation symbols dimmed}%
|
||||||
|
% \insertslidenavigationsymbol%
|
||||||
|
% \insertframenavigationsymbol%
|
||||||
|
% \insertsectionnavigationsymbol%
|
||||||
|
% \insertsubsectionnavigationsymbol%
|
||||||
|
% \insertdocnavigationsymbol%
|
||||||
|
% \insertbackfindforwardnavigationsymbol%
|
||||||
|
}
|
||||||
|
\makeatother
|
||||||
|
|
||||||
|
\begin{document}
|
||||||
|
|
||||||
|
\title{Interventions}
|
||||||
|
% \subtitle{A subtitle}
|
||||||
|
\author{Martin Thoma}
|
||||||
|
\date{10. August 2015}
|
||||||
|
\subject{Causality}
|
||||||
|
|
||||||
|
\frame{\titlepage}
|
||||||
|
|
||||||
|
% Show table of contents
|
||||||
|
% \frame{
|
||||||
|
% \frametitle{Inhalt}
|
||||||
|
% \setcounter{tocdepth}{1}
|
||||||
|
% \tableofcontents
|
||||||
|
% \setcounter{tocdepth}{2}
|
||||||
|
% }
|
||||||
|
|
||||||
|
%\AtBeginSection[]{
|
||||||
|
% \InsertToC[sections={\thesection}] % shows only subsubsections of one subsection
|
||||||
|
%}
|
||||||
|
|
||||||
|
\input{introduction}
|
||||||
|
\input{main}
|
||||||
|
\input{end}
|
||||||
|
\end{document}
|
16
presentations/causality-presentation/backup/introduction.tex
Normal file
16
presentations/causality-presentation/backup/introduction.tex
Normal file
|
@ -0,0 +1,16 @@
|
||||||
|
%!TEX root = interventions.tex
|
||||||
|
\section{SEMs}
|
||||||
|
\subsection{SEMs}
|
||||||
|
\begin{frame}{SEMs}
|
||||||
|
\begin{block}{Structural Equaltion Model (kurz: SEM)}
|
||||||
|
Ein \textit{Strukturgleichungsmodel} ist ein Tupel
|
||||||
|
$\mathcal{S} := (\mathcal{S}, \mathbb{P}^\mathbf{N})$, wobei
|
||||||
|
$\mathcal{S} = (S_1, \dots, S_p)$ ein Tupel aus $p$ Gleichungen
|
||||||
|
\[S_j : X_j = f_j(\mathbf{PA}_j, N_j), \;\;\; j=1, \dots, p\]
|
||||||
|
ist und $\mathbf{PA}_j \subseteq \Set{X_1, \dots, X_p} \setminus \Set{X_j}$
|
||||||
|
die \textit{Eltern von $X_j$} und $\mathbb{P}^\mathbf{N} = \mathbb{P}^{N_1, \dots, N_p}$
|
||||||
|
die gemeinsame Verteilung der Rauschvariablen ist. Diese müssen
|
||||||
|
von einander unabhängig sein, $\mathbb{P}^\mathbf{N}$ muss also eine
|
||||||
|
Produktverteilung sein.
|
||||||
|
\end{block}
|
||||||
|
\end{frame}
|
255
presentations/causality-presentation/backup/main.tex
Normal file
255
presentations/causality-presentation/backup/main.tex
Normal file
|
@ -0,0 +1,255 @@
|
||||||
|
%!TEX root = interventions.tex
|
||||||
|
\section{Interventions}
|
||||||
|
\subsection{Definition}
|
||||||
|
\begin{frame}{Interventionen}
|
||||||
|
\begin{block}{Interventionsverteilung}
|
||||||
|
Sei $\mathbb{P}^\mathbf{X}$ die zu einer SEM
|
||||||
|
$\mathcal{S} := (\mathcal{S}, \mathbb{P}^N)$ gehörende Verteilung. \onslide<2->{Dann
|
||||||
|
kann eine (oder mehr) Strukturgleichungen aus $\mathcal{S}$ ersetzt
|
||||||
|
werden ohne einen Zyklus im Graphen zu erzeugen.} \onslide<3->{Die Verteilung des
|
||||||
|
neuen SEM $\tilde{\mathcal{S}}$ heißt dann
|
||||||
|
\textit{Interventionsverteilung}.}
|
||||||
|
|
||||||
|
\onslide<4->{Bei den Variablen, deren Strukturgleichungen ersetzt wurden, sagt man,
|
||||||
|
wurde \textit{interveniert}.}
|
||||||
|
|
||||||
|
\onslide<5->{Die neue Verteilung wird mit
|
||||||
|
\[\mathbb{P}_{\tilde{\mathcal{S}}}^{\mathbf{X}} = \mathbb{P}_{\mathcal{S}, do(X_j:=\tilde{f}(\tilde{\mathbf{PA}}_j, \tilde{N}_j))}^{\mathbf{X}}\]
|
||||||
|
beschrieben.}
|
||||||
|
|
||||||
|
\onslide<6->{Die Menge der Rauschvariablen in $\mathcal{S}$ beinhaltet nun einige
|
||||||
|
\enquote{neue} und einige \enquote{alte} $N$'s. $\mathcal{S}$ muss
|
||||||
|
paarweise unabhängig sein.}
|
||||||
|
\end{block}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\begin{frame}{Nieren-Beispiel}
|
||||||
|
\begin{table}
|
||||||
|
\begin{tabular}{lrr}
|
||||||
|
\toprule
|
||||||
|
~ & \multicolumn{2}{c}{\textbf{Behandlungserfolg}} \\
|
||||||
|
\cmidrule{2-3}
|
||||||
|
~ & \multicolumn{1}{c}{\textbf{A}} & \multicolumn{1}{c}{\textbf{B}} \\ \midrule
|
||||||
|
Kleine Nierensteine & \textbf{93\%} & 87\% \\
|
||||||
|
Große Nierensteine & \textbf{73\%} & 69\% \\
|
||||||
|
\textbf{Gesamt} & 78\% & \textbf{83\%} \\
|
||||||
|
\bottomrule
|
||||||
|
\end{tabular}
|
||||||
|
\end{table}
|
||||||
|
|
||||||
|
\begin{figure}[!h]
|
||||||
|
\centering
|
||||||
|
\begin{tikzpicture}[->,>=stealth',shorten >=1pt,auto,node distance=2.5cm,
|
||||||
|
thick,main node/.style={circle,fill=blue!10,draw,font=\sffamily\Large\bfseries}]
|
||||||
|
\node (Z) at (1,1) {Z};
|
||||||
|
\node (T) at (0,0) {T};
|
||||||
|
\node (R) at (2,0) {R};
|
||||||
|
|
||||||
|
\foreach \from/\to in {Z/T,Z/R,T/R}
|
||||||
|
\draw (\from) -> (\to);
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
Z &= N_Z, \;\;\;& N_Z &\sim Ber(\nicefrac{1}{4})\\
|
||||||
|
T &= \lfloor 2 \cdot (1-Z+N_T) \rfloor \;\;\; & N_T &\sim \mathcal{N}(0, 1)\\
|
||||||
|
R &= \lfloor 2 \cdot (0.6 \cdot (1-Z) + 0.4 \cdot (1-T) + N_R) \rfloor \;\;\; & N_R &\sim \mathcal{N}(0, 1)
|
||||||
|
\end{align*}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
% \begin{frame}{Interventionen: Spezialfälle}
|
||||||
|
% \begin{block}{Interventionsverteilung}
|
||||||
|
% Wenn $\tilde{f}(\tilde{\mathbf{PA}_j}, \tilde{N}_j)$ eine Punktmasse
|
||||||
|
% auf ein $a \in \mathbb{R}$ legt schreibt man
|
||||||
|
% \[\mathbb{P}_\mathcal{S, do(X_j := \tilde{f}(\tilde{\mathbf{PA}_j}, \tilde{N}_j))}^{\mathbf{X}}\]
|
||||||
|
% und nennt die Intervention
|
||||||
|
% \textbf{perfekt}.\\
|
||||||
|
|
||||||
|
% Eine Intervention mit $\tilde{\mathbf{PA}_j} = \mathbf{PA}_j$ wird
|
||||||
|
% \textbf{mangelhaft} genannt.
|
||||||
|
% \end{block}
|
||||||
|
% \end{frame}
|
||||||
|
|
||||||
|
\begin{frame}[t]{Beispiel 2.2.2: Ursache und Effekt}
|
||||||
|
Es sei $\mathcal{S}$ gegeben durch
|
||||||
|
\begin{align}
|
||||||
|
X &= N_X\\
|
||||||
|
Y &= 4 \cdot X + N_Y
|
||||||
|
\end{align}
|
||||||
|
mit $N_X, N_Y \overset{\text{iid}}{\sim} \mathcal{N}(0, 1)$ und den
|
||||||
|
Graphen $X \rightarrow Y$.
|
||||||
|
\only<2-9>{
|
||||||
|
Dann gilt:
|
||||||
|
\begin{align}
|
||||||
|
\mathbb{P}_\mathcal{S}^Y = \mathcal{N}(0, 4^2 + 1) &\onslide<3->{\neq \mathcal{N}(8, 1)} \onslide<4->{= \mathbb{P}_{\mathcal{S}, do(X:=2)}^{Y}} \onslide<5->{= \mathbb{P}_\mathcal{S}^{Y|X=2}}\\
|
||||||
|
&\onslide<6->{\neq \mathcal{N}(12, 1)} \onslide<7->{= \mathbb{P}_{\mathcal{S}, do(X:=3)}^{Y}} \onslide<8->{= \mathbb{P}_\mathcal{S}^{Y|X=3}}
|
||||||
|
\end{align}
|
||||||
|
\onslide<9->{$\Rightarrow$ Intervention auf $X$ beeinflusst die Verteilung von $Y$.}
|
||||||
|
}
|
||||||
|
\only<10-13>{
|
||||||
|
Aber:
|
||||||
|
|
||||||
|
\begin{align}
|
||||||
|
\mathbb{P}_{\mathcal{S}, do(Y:=2)}^{X} &= \mathcal{N}(0, 1)\\
|
||||||
|
\onslide<11->{&= \mathbb{P}_\mathcal{S}^X}\\
|
||||||
|
\onslide<12->{&= \mathbb{P}_{\mathcal{S}, do(Y:=3.14159)}^{X}}\\
|
||||||
|
\onslide<13->{&\neq \mathbb{P}_\mathcal{S}^{X|Y=2}}
|
||||||
|
\end{align}
|
||||||
|
}
|
||||||
|
\only<14->{\\
|
||||||
|
Beispiel: $X$ (rauchen) $\rightarrow Y$ (weiße Zähne)
|
||||||
|
\begin{itemize}
|
||||||
|
\item<15-> Es besteht eine Asymmetrie zwischen Ursache ($X$) und Effekt ($Y$).
|
||||||
|
\item<16-> $\mathbb{P}_{\mathcal{S}, do(Y:=\tilde{N}_Y)}^{X,Y} \Rightarrow X \perp\!\!\!\perp Y$
|
||||||
|
\item<17-> $\mathbb{P}_{\mathcal{S}, do(X:=\tilde{N}_X)}^{X,Y} \text{ und } Var(\tilde{N}_X) > 0 \Rightarrow X \not\perp\!\!\!\perp Y$
|
||||||
|
\end{itemize}
|
||||||
|
}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\section{Totaler kausaler Effekt}
|
||||||
|
\subsection{Totaler kausaler Effekt}
|
||||||
|
\begin{frame}{Totaler kausaler Effekt}
|
||||||
|
\begin{block}{Totaler kausaler Effekt}
|
||||||
|
Gegeben sei ein SEM $\mathcal{S}$. Dann gibt es einen
|
||||||
|
(totalen) kausalen Effekt von $X$ nach $Y$ genau dann wenn
|
||||||
|
\[\exists \tilde{N}_X : X \not\!\perp\!\!\!\perp Y \text{ in } \mathbb{P}_{\mathcal{S}, do(X:=\tilde{N}_X)}^{\mathbf{X}}\]
|
||||||
|
gilt.
|
||||||
|
\end{block}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\begin{frame}[t]{Totaler kausaler Effekt: Äquivalenzen}
|
||||||
|
Folgende Aussagen sind äquivalent:
|
||||||
|
|
||||||
|
\begin{enumerate}[label=(\roman*)]
|
||||||
|
\item $\exists \tilde{N}_{X_1} \hphantom{\text{ mit vollem Support }}: X_1 \not\!\perp\!\!\!\perp X_2 \text{ in } \mathbb{P}_{\mathcal{S}, do(X_1:=\tilde{N}_{X_1})}^{\mathbf{X}}$
|
||||||
|
\item $\exists x^\triangle \exists x^\square: \mathbb{P}_{\mathcal{S}, do(X_1:=x^\triangle)}^{X_2} \neq \mathbb{P}_{\mathcal{S}, do(X_1:=x^\square)}^{X_2}$
|
||||||
|
\item $\exists x^\triangle \hphantom{\exists x^\square}: \mathbb{P}_{\mathcal{S}, do(X_1:=x^\triangle)}^{X_2} \neq \mathbb{P}_\mathcal{S}^{X_2}$.
|
||||||
|
\item $\forall \tilde{N}_{X_1} \text{ mit vollem Support }: X_1 \not\!\perp\!\!\!\perp X_2 \text{ in } \mathbb{P}_{\mathcal{S}, do(X_1:=\tilde{N}_{X_1})}^{\mathbf{X}}$
|
||||||
|
\end{enumerate}
|
||||||
|
|
||||||
|
\only<2>{
|
||||||
|
\textbf{Beweisplan:}\\
|
||||||
|
(i) $\Rightarrow$ (ii) $\Rightarrow$ (iv) $\Rightarrow$ (i)\\
|
||||||
|
$\neg$(i) $\Rightarrow$ $\neg$ (iii) äquivalent zu (iii) $\Rightarrow$ (i)\\
|
||||||
|
(ii) $\Rightarrow$ (iii)
|
||||||
|
}
|
||||||
|
\only<3-5>{
|
||||||
|
\begin{align}
|
||||||
|
p_{\mathcal{S}, do(X_1:=x_1)}^{X_2}(x_2) &= \int \prod_{j \neq 1} p_j(x_j|x_{pa(j)}) \mathrm{d}x_3 \dots \mathrm{d}x_p \nonumber
|
||||||
|
\only<4->{\\&= \int \prod_{j \neq 1} p_j(x_j|x_{pa(j)}) \frac{\tilde{p}(x_1)}{\tilde{p}(x_1)}\mathrm{d}x_3 \dots \mathrm{d}x_p \nonumber}
|
||||||
|
\only<5->{\\&= p_{\mathcal{S}, do(X_1:=\tilde{N}_1)}^{X_2 | X_1=x_1}(x_2)\tag{A.1}\label{eq:A.1}}
|
||||||
|
\end{align}
|
||||||
|
\only<5->{mit $\tilde{p}(x_1) > 0$.}
|
||||||
|
}
|
||||||
|
\only<6>{
|
||||||
|
\begin{align}
|
||||||
|
X_2 \not\perp\!\!\!\perp X_1 \text{ in } \mathbb{Q} \Leftrightarrow &\exists x_1^\triangle, x_1^\square \nonumber\\
|
||||||
|
&\text{mit } q(x_1^\triangle), q(x_1^\square) > 0\nonumber\\
|
||||||
|
&\text{und } \mathbb{Q}^{X_2|X_1=x_1^\triangle} \neq \mathbb{Q}^{X_2 | X_1=x_1^\square}\tag{A.2}\label{eq:A.2}
|
||||||
|
\end{align}
|
||||||
|
}
|
||||||
|
|
||||||
|
\only<7>{
|
||||||
|
\begin{align}
|
||||||
|
X_2 \not\perp\!\!\!\perp X_1 \text{ in } \mathbb{Q} \Leftrightarrow &\exists x_1^\triangle \nonumber\\
|
||||||
|
&\text{mit } q(x_1^\triangle) > 0\nonumber\\
|
||||||
|
&\text{und } \mathbb{Q}^{X_2|X_1=x_1^\triangle} \neq \mathbb{Q}^{X_2}\tag{A.3}\label{eq:A.3}
|
||||||
|
\end{align}
|
||||||
|
}
|
||||||
|
|
||||||
|
\only<8-10>{
|
||||||
|
\textbf{Beweisplan:} (i) $\Rightarrow$ (ii)\\
|
||||||
|
\onslide<9->{(i) $\overset{A.2}{\Rightarrow} \exists x_1^\triangle, x_1^\square$ mit
|
||||||
|
pos. Dichte unter $\tilde{N_1}$ sodass $\mathbb{P}_{\mathcal{S}, do(X_1:=\tilde{N_1})}^{X_2|X_1=x_1^\triangle} \neq \mathbb{P}_{\mathcal{S}, do(X_1:=\tilde{N_1})}^{X_2 | X_1=x^\square}$\\}
|
||||||
|
\onslide<10->{$\overset{A.1}{\Rightarrow} (ii)$}
|
||||||
|
}
|
||||||
|
\only<11-13>{
|
||||||
|
\textbf{Beweisplan:} (ii) $\Rightarrow$ (iv)\\
|
||||||
|
\onslide<12->{(ii) $\overset{A.1}{\Rightarrow} \exists x_1^\triangle, x_1^\square$ mit pos. Dichte unter $\hat{N_1}$ sodass $\mathbb{P}_{\mathcal{S}, do(X_1:=\hat{N_1})}^{X_2|X_1=x_1^\triangle} \neq \mathbb{P}_{\mathcal{S}, do(X_1 := \hat{N_1})}^{X_2 | X_1 = x_1^\square}$}
|
||||||
|
\onslide<13->{$\overset{A.2}{\Rightarrow} (iv)$}
|
||||||
|
}
|
||||||
|
\only<14>{
|
||||||
|
\textbf{Beweisplan:} (iv) $\Rightarrow$ (i)\\
|
||||||
|
Trivial
|
||||||
|
}
|
||||||
|
\only<15-17>{
|
||||||
|
\textbf{Beweisplan:} $\neg$(i) $\Rightarrow$ $\neg$ (iii)\\
|
||||||
|
\onslide<16->{Es gilt: $\mathbb{P}_\mathcal{S}^{X_2} = \mathbb{P}_{\mathcal{S}, do(X_1 := N_1^*)}^{X_2}$, wobei $N_1^*$ wie $\mathbb{P}_\mathcal{S}^{X_2}$ verteilt ist.\\}
|
||||||
|
\onslide<17->{
|
||||||
|
\begin{align}
|
||||||
|
\neg (i) &\Rightarrow X_2 \perp\!\!\!\perp X_1 \text{ in } \mathbb{P}_{\mathcal{S}, do(X_1 := N_1^*)}^{\textbf{X}}\\
|
||||||
|
&\overset{A.3}{\Rightarrow} \mathbb{P}_{\mathcal{S}, do(X_1 :=N_1^*)}^{X_2| X_1=x^\triangle} = \mathbb{P}_{\mathcal{S}, do(X_1 := N_1^*)}^{X_2} \;\;\;\forall x^\triangle \text{ mit } p_1(x^\triangle) > 0\\
|
||||||
|
&\overset{A.1}{\Rightarrow} \mathbb{P}_{\mathcal{S}, do(X_1:=x^\triangle)}^{X_2} = \mathbb{P}_\mathcal{S}^{X_2} \;\;\; \forall x^\triangle \text{ mit } p_1(x^\triangle) > 0\\
|
||||||
|
&\overset{\neg (ii)}{\Rightarrow} \neg (iii)
|
||||||
|
\end{align}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
\only<18>{
|
||||||
|
\textbf{Beweisplan:} (ii) $\Rightarrow$ (iii)\\
|
||||||
|
Trivial (TODO: wirklich?)
|
||||||
|
}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\begin{frame}{Beispiel 2.2.6: Randomisierte Studie}
|
||||||
|
\begin{itemize}
|
||||||
|
\item<1-> Weise eine Behandlung $T$ zufällig (nach $\tilde{N_T}$) einem
|
||||||
|
Patienten zu. Das könnte auch ein Placebo sein.
|
||||||
|
\item<2-> Im SEM: Daten aus $\mathbb{P}_{\mathcal{S}, do(T:=\tilde{N_T})}^{\mathbf{X}}$
|
||||||
|
\item<3-> Falls immer noch Abhängigkeit zw. Behandlung und Erfolg
|
||||||
|
vorliegt $\Rightarrow T$ hat einen totalen kausalen Effekt auf
|
||||||
|
den Behandlungserfolg.
|
||||||
|
\end{itemize}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\begin{frame}{Beispiel 2.2.7: Nicolai's running-and-health Beispiel}
|
||||||
|
Das zugrundeliegende (\enquote{wahre}) SEM $\mathcal{S}$, welches die Daten
|
||||||
|
generierte, hat die Form:
|
||||||
|
|
||||||
|
\begin{align}
|
||||||
|
A &= N_A &&\text{mit } N_A \sim Ber(\nicefrac{1}{2})\\
|
||||||
|
H &= A + N_H \mod 2 &&\text{mit } N_H \sim Ber(\nicefrac{1}{3})\\
|
||||||
|
B &= H + N_B \mod 2 &&\text{mit } N_B \sim Ber(\nicefrac{1}{20})
|
||||||
|
\end{align}
|
||||||
|
|
||||||
|
mit dem Graphen $A \rightarrow H \rightarrow B$ und\\
|
||||||
|
$N_A, N_H, N_B$ unabhängig.
|
||||||
|
|
||||||
|
\begin{itemize}
|
||||||
|
\item<1-> $B$ ist hilfreicher für die Vorhersage von $H$ als $A$.
|
||||||
|
\item<2-> Intervention von $A$ hat auf $H$ einen größeren Einfluss als Intervention von $B$.
|
||||||
|
\end{itemize}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\begin{frame}{Proposition 2.2.9}
|
||||||
|
\begin{enumerate}[label=(\roman*)]
|
||||||
|
\item<1-> Falls es keinen gerichteten Pfad von $X$ nach $Y$ gibt, dann
|
||||||
|
gibt es keinen kausalen Effekt.
|
||||||
|
\item<2-> Manchmal gibt es einen gerichteten Pfad, aber keinen kausalen
|
||||||
|
Effekt.
|
||||||
|
\end{enumerate}
|
||||||
|
|
||||||
|
\onslide<3->{Beweis von (i): Folgt aus der Markov-Eigenschaft des
|
||||||
|
interventierten SEMs. }\onslide<4->{Nach dem Entfernen der
|
||||||
|
in $X$ eingehenden Kanten gilt: $X$ und $Y$ sind
|
||||||
|
$d$-separiert, falls es keinen direkten Pfad von $X$ nach
|
||||||
|
$Y$ gibt. \\}
|
||||||
|
\onslide<5->{Beweis von (ii) durch Gegenbeispiel: Sei
|
||||||
|
\begin{align}
|
||||||
|
X &= N_X\\
|
||||||
|
Z &= 2X + N_Z\\
|
||||||
|
Y &= 4X - 2Z + N_Y
|
||||||
|
\end{align}
|
||||||
|
Dann gilt: $Y = - 2N_Z + N_Y$ und daher $X \perp\!\!\!\perp$ für alle $N_X$. $\square$
|
||||||
|
}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
% \begin{frame}{Nierensteine}
|
||||||
|
% \begin{columns}
|
||||||
|
% \begin{column}{0.45\textwidth}
|
||||||
|
% \begin{center}\textbf{Modell A}\end{center}
|
||||||
|
% \end{column}
|
||||||
|
% \begin{column}{0.45\textwidth}
|
||||||
|
% \begin{center}\textbf{Modell B}\end{center}
|
||||||
|
% \end{column}
|
||||||
|
% \end{columns}
|
||||||
|
% \end{frame}
|
23
presentations/causality-presentation/end.tex
Normal file
23
presentations/causality-presentation/end.tex
Normal file
|
@ -0,0 +1,23 @@
|
||||||
|
%!TEX root = interventions.tex
|
||||||
|
\section{Ende}
|
||||||
|
\subsection{Quellen}
|
||||||
|
\begin{frame}{Quellen}
|
||||||
|
\begin{itemize}
|
||||||
|
\item \href{https://stat.ethz.ch/people/jopeters/index/edit/causalityHomepage/causality_files/scriptChapter1-4.pdf}{Causality, 2015. Jonas Peters.}
|
||||||
|
\end{itemize}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\begin{frame}{Definitionen}
|
||||||
|
\begin{block}{Unabhängigkeit}
|
||||||
|
$X$ und $Y$ sind unabhängig $:\Leftrightarrow p(x, y) = p(x) \cdot p(y) \;\;\;\forall x,y$.
|
||||||
|
|
||||||
|
Man schreibt dann: $X \perp\!\!\!\perp Y$ und andernfalls $X \not\!\perp\!\!\!\perp Y$
|
||||||
|
\end{block}
|
||||||
|
|
||||||
|
\begin{block}{Korrelation}
|
||||||
|
Seien $X$ und $Y$ Zufallsvariablen und
|
||||||
|
\[C(X,Y) := \mathbb{E}((X- \mathbb{E}X) \cdot (Y - \mathbb{E}Y))\]
|
||||||
|
die Kovarianz zwischen $X$ und $Y$. Gilt $C(X, Y) = 0$, so heißen
|
||||||
|
$X$ und $Y$ unkorreliert.
|
||||||
|
\end{block}
|
||||||
|
\end{frame}
|
92
presentations/causality-presentation/interventions.tex
Normal file
92
presentations/causality-presentation/interventions.tex
Normal file
|
@ -0,0 +1,92 @@
|
||||||
|
\documentclass{beamer}
|
||||||
|
\usetheme{Frankfurt}
|
||||||
|
\usecolortheme{beaver}
|
||||||
|
\definecolor{links}{HTML}{2A1B81}
|
||||||
|
\hypersetup{colorlinks,linkcolor=,urlcolor=links}
|
||||||
|
\usepackage{hyperref}
|
||||||
|
\usepackage[utf8]{inputenc} % this is needed for german umlauts
|
||||||
|
\usepackage[ngerman]{babel} % this is needed for german umlauts
|
||||||
|
\usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
|
||||||
|
\usepackage{braket} % needed for \Set
|
||||||
|
\usepackage{csquotes}
|
||||||
|
\usepackage{enumitem}
|
||||||
|
\setitemize{label=\usebeamerfont*{itemize item}%
|
||||||
|
\usebeamercolor[fg]{itemize item}
|
||||||
|
\usebeamertemplate{itemize item}}
|
||||||
|
\usepackage{amsmath, amssymb}
|
||||||
|
\usepackage{bm}
|
||||||
|
\usepackage{dsfont}
|
||||||
|
\usepackage{nicefrac}
|
||||||
|
\usefonttheme[onlymath]{serif}
|
||||||
|
\usepackage{siunitx} % this package is for units!
|
||||||
|
\sisetup{range-phrase=--, range-units=single}
|
||||||
|
|
||||||
|
\usepackage{booktabs} % for \toprule, \midrule and \bottomrule
|
||||||
|
\selectlanguage{ngerman}
|
||||||
|
|
||||||
|
\usepackage{tikz}
|
||||||
|
\usetikzlibrary{arrows,positioning, calc}
|
||||||
|
|
||||||
|
\setbeamertemplate{navigation symbols}{}
|
||||||
|
\addtobeamertemplate{navigation symbols}{}{%
|
||||||
|
\usebeamerfont{footline}%
|
||||||
|
\usebeamercolor[fg]{footline}%
|
||||||
|
\hspace{1em}%
|
||||||
|
\insertframenumber/\inserttotalframenumber
|
||||||
|
}
|
||||||
|
\makeatletter
|
||||||
|
\setbeamertemplate{footline}
|
||||||
|
{%
|
||||||
|
\pgfuseshading{beamer@barshade}%
|
||||||
|
\ifbeamer@sb@subsection%
|
||||||
|
\vskip-9.75ex%
|
||||||
|
\else%
|
||||||
|
\vskip-7ex%
|
||||||
|
\fi%
|
||||||
|
\begin{beamercolorbox}[ignorebg,ht=2.25ex,dp=3.75ex]{section in head/foot}
|
||||||
|
\insertnavigation{\paperwidth}
|
||||||
|
\end{beamercolorbox}%
|
||||||
|
\ifbeamer@sb@subsection%
|
||||||
|
\begin{beamercolorbox}[ignorebg,ht=2.125ex,dp=1.125ex,%
|
||||||
|
leftskip=.3cm,rightskip=.3cm plus1fil]{subsection in head/foot}
|
||||||
|
\usebeamerfont{subsection in head/foot}\insertsubsectionhead
|
||||||
|
\end{beamercolorbox}%
|
||||||
|
\fi%
|
||||||
|
}%
|
||||||
|
\setbeamertemplate{headline}{%
|
||||||
|
% \hskip1em\usebeamercolor[fg]{navigation symbols dimmed}%
|
||||||
|
% \insertslidenavigationsymbol%
|
||||||
|
% \insertframenavigationsymbol%
|
||||||
|
% \insertsectionnavigationsymbol%
|
||||||
|
% \insertsubsectionnavigationsymbol%
|
||||||
|
% \insertdocnavigationsymbol%
|
||||||
|
% \insertbackfindforwardnavigationsymbol%
|
||||||
|
}
|
||||||
|
\makeatother
|
||||||
|
|
||||||
|
\begin{document}
|
||||||
|
|
||||||
|
\title{Interventions}
|
||||||
|
% \subtitle{A subtitle}
|
||||||
|
\author{Martin Thoma}
|
||||||
|
\date{10. August 2015}
|
||||||
|
\subject{Causality}
|
||||||
|
|
||||||
|
\frame{\titlepage}
|
||||||
|
|
||||||
|
% Show table of contents
|
||||||
|
% \frame{
|
||||||
|
% \frametitle{Inhalt}
|
||||||
|
% \setcounter{tocdepth}{1}
|
||||||
|
% \tableofcontents
|
||||||
|
% \setcounter{tocdepth}{2}
|
||||||
|
% }
|
||||||
|
|
||||||
|
%\AtBeginSection[]{
|
||||||
|
% \InsertToC[sections={\thesection}] % shows only subsubsections of one subsection
|
||||||
|
%}
|
||||||
|
|
||||||
|
\input{introduction}
|
||||||
|
\input{main}
|
||||||
|
\input{end}
|
||||||
|
\end{document}
|
96
presentations/causality-presentation/introduction.tex
Normal file
96
presentations/causality-presentation/introduction.tex
Normal file
|
@ -0,0 +1,96 @@
|
||||||
|
%!TEX root = interventions.tex
|
||||||
|
\section{Einführung}
|
||||||
|
\subsection{Einführung}
|
||||||
|
\begin{frame}{Nierensteine}
|
||||||
|
\begin{itemize}
|
||||||
|
\item Kristalline Ablagerungen
|
||||||
|
\item \SIrange{2}{4}{\milli\meter} unkritisch,
|
||||||
|
ab \SI{10}{\milli\meter} operative Entfernung
|
||||||
|
\item 2~Methoden des Entfernens:
|
||||||
|
\begin{itemize}
|
||||||
|
\item \textbf{A}: Offene Operation
|
||||||
|
\item \textbf{B}: PCNL (Percutaneous nephrolithotomy): Entfernung
|
||||||
|
durch ca 1cm große Punktuierung der Haut
|
||||||
|
\end{itemize}
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
\uncover<2->{Was ist besser: A oder B?}\\
|
||||||
|
\uncover<3->{Ist die Entscheidung abhängig von der Größe?}\\
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{frame}{Simpson-Paradoxon}
|
||||||
|
\begin{table}
|
||||||
|
% \centering
|
||||||
|
\begin{tabular}{lrr}
|
||||||
|
\toprule
|
||||||
|
~ & \multicolumn{2}{c}{\textbf{Behandlungserfolg}} \\
|
||||||
|
\cmidrule{2-3}
|
||||||
|
~ & \multicolumn{1}{c}{\textbf{A}} & \multicolumn{1}{c}{\textbf{B}} \\ \midrule
|
||||||
|
Kleine Nierensteine & \textbf{93\%} \onslide<2>{(\hphantom{0}81/\hphantom{0}87)} & 87\% \onslide<2>{(234/270)} \\
|
||||||
|
Große Nierensteine & \textbf{73\%} \onslide<2>{(192/263)} & 69\% \onslide<2>{(\hphantom{0}55/\hphantom{0}80)}\\
|
||||||
|
\textbf{Gesamt} & 78\% \onslide<2>{(273/350)} & \textbf{83\%} \onslide<2>{(289/350)} \\
|
||||||
|
\bottomrule
|
||||||
|
\end{tabular}
|
||||||
|
\caption{Nierensteine durch (A) offene Operation oder (B) PCNL entfernen.}
|
||||||
|
\label{table:countries}
|
||||||
|
\end{table}
|
||||||
|
|
||||||
|
% Quelle: Causality, 2015. Jonas Peters. -- ist für den gesamten Vortrag die Quelle...
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\begin{frame}{Aufstellen eines SEM}
|
||||||
|
\begin{itemize}[label={}]
|
||||||
|
\item $Z \in \Set{\text{klein}, \text{groß}}$: Größe des Nierensteins
|
||||||
|
\item $T \in \Set{A, B}$: Behandlung (Treatment)
|
||||||
|
\item $R \in \Set{\text{erfolg}, \text{misserfolg}}$: Behandlungserfolg (Recovery)
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
Sei das \enquote{wahre} SEM:
|
||||||
|
\begin{figure}[!h]
|
||||||
|
\centering
|
||||||
|
\begin{tikzpicture}[->,>=stealth',shorten >=1pt,auto,node distance=2.5cm,
|
||||||
|
thick,main node/.style={circle,fill=blue!10,draw,font=\sffamily\Large\bfseries}]
|
||||||
|
\node (Z) at (1,1) {Z};
|
||||||
|
\node (T) at (0,0) {T};
|
||||||
|
\node (R) at (2,0) {R};
|
||||||
|
|
||||||
|
\foreach \from/\to in {Z/T,Z/R,T/R}
|
||||||
|
\draw (\from) -> (\to);
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{figure}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\begin{frame}{Nieren-Beispiel}
|
||||||
|
\begin{table}
|
||||||
|
\begin{tabular}{lrr}
|
||||||
|
\toprule
|
||||||
|
~ & \multicolumn{2}{c}{\textbf{Behandlungserfolg}} \\
|
||||||
|
\cmidrule{2-3}
|
||||||
|
~ & \multicolumn{1}{c}{\textbf{A}} & \multicolumn{1}{c}{\textbf{B}} \\ \midrule
|
||||||
|
Kleine Nierensteine & \textbf{93\%} (\hphantom{0}81/\hphantom{0}87) & 87\% (234/270) \\
|
||||||
|
Große Nierensteine & \textbf{73\%} (192/263) & 69\% (\hphantom{0}55/\hphantom{0}80)\\
|
||||||
|
\textbf{Gesamt} & 78\% (273/350) & \textbf{83\%} (289/350) \\
|
||||||
|
\bottomrule
|
||||||
|
\end{tabular}
|
||||||
|
\end{table}
|
||||||
|
|
||||||
|
\begin{figure}[!h]
|
||||||
|
\centering
|
||||||
|
\begin{tikzpicture}[->,>=stealth',shorten >=1pt,auto,node distance=2.5cm,
|
||||||
|
thick,main node/.style={circle,fill=blue!10,draw,font=\sffamily\Large\bfseries}]
|
||||||
|
\node (Z) at (1,1) {Z};
|
||||||
|
\node (T) at (0,0) {T};
|
||||||
|
\node (R) at (2,0) {R};
|
||||||
|
|
||||||
|
\foreach \from/\to in {Z/T,Z/R,T/R}
|
||||||
|
\draw (\from) -> (\to);
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
% \begin{align*}
|
||||||
|
% Z &= N_Z, \;\;\;& N_Z &\sim Ber(\nicefrac{1}{4})\\
|
||||||
|
% T &= \lfloor 2 \cdot (1-Z+N_T) \rfloor \;\;\; & N_T &\sim \mathcal{N}(0, 1)\\
|
||||||
|
% R &= \lfloor 2 \cdot (0.6 \cdot (1-Z) + 0.4 \cdot (1-T) + N_R) \rfloor \;\;\; & N_R &\sim \mathcal{N}(0, 1)
|
||||||
|
% \end{align*}
|
||||||
|
\end{frame}
|
162
presentations/causality-presentation/main.tex
Normal file
162
presentations/causality-presentation/main.tex
Normal file
|
@ -0,0 +1,162 @@
|
||||||
|
%!TEX root = interventions.tex
|
||||||
|
\section{Interventions}
|
||||||
|
\subsection{Definition}
|
||||||
|
\begin{frame}[t]{Nieren-Beispiel}
|
||||||
|
\begin{align*}
|
||||||
|
\mathbb{P}_{\mathcal{S}_A}(R=1) &= \sum_{z=0}^1 \mathbb{P}_{\mathcal{S}_A}(R=1, T=A, Z=z)
|
||||||
|
\onslide<2->{\\&= \sum_{z=0}^1 \mathbb{P}_{\mathcal{S}_A}(R=1 | T=A, Z=z) \mathbb{P}_{\mathcal{S}_A}(T=A, Z=z)}
|
||||||
|
\onslide<3->{\\&= \sum_{z=0}^1 \mathbb{P}_{\mathcal{S}_A}(R=1 | T=A, Z=z) \mathbb{P}_{\mathcal{S}_A}(Z=z)}
|
||||||
|
\onslide<4->{\\&= 0.93 \cdot \frac{357}{700} + 0.73 \cdot \frac{343}{700} = 0.832}
|
||||||
|
\onslide<5->{\\\mathbb{P}_{\mathcal{S}_B}(R=1)&= 0.87 \cdot \frac{357}{700} + 0.69 \cdot \frac{343}{700} = 0.782}
|
||||||
|
\end{align*}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\begin{frame}{Interventionen}
|
||||||
|
\begin{block}{Interventionsverteilung}
|
||||||
|
Sei $\mathbb{P}^\mathbf{X}$ die zu einer SEM
|
||||||
|
$\mathcal{S} := (\mathcal{S}, \mathbb{P}^N)$ gehörende Verteilung. \onslide<2->{Dann
|
||||||
|
kann eine (oder mehr) Strukturgleichungen aus $\mathcal{S}$ ersetzt
|
||||||
|
werden ohne einen Zyklus im Graphen zu erzeugen.} \onslide<3->{Die Verteilung des
|
||||||
|
neuen SEM $\tilde{\mathcal{S}}$ heißt dann
|
||||||
|
\textit{Interventionsverteilung}.}
|
||||||
|
|
||||||
|
\onslide<4->{Bei den Variablen, deren Strukturgleichungen ersetzt wurden, sagt man,
|
||||||
|
wurde \textit{interveniert}.}
|
||||||
|
|
||||||
|
\onslide<5->{Die neue Verteilung wird mit
|
||||||
|
\[\mathbb{P}_{\tilde{\mathcal{S}}}^{\mathbf{X}} = \mathbb{P}_{\mathcal{S}, do(X_j:=\tilde{f}(\tilde{\mathbf{PA}}_j, \tilde{N}_j))}^{\mathbf{X}}\]
|
||||||
|
beschrieben.}
|
||||||
|
|
||||||
|
\onslide<6->{Die Menge der Rauschvariablen in $\mathcal{S}$ beinhaltet nun einige
|
||||||
|
\enquote{neue} und einige \enquote{alte} $N$'s. Diese müssen
|
||||||
|
gemeinsam unabhängig sein.}
|
||||||
|
\end{block}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\begin{frame}[t]{Beispiel 2.2.2: Ursache und Effekt}
|
||||||
|
Es sei $\mathcal{S}$ gegeben durch
|
||||||
|
\begin{align}
|
||||||
|
X &:= N_X\\
|
||||||
|
Y &:= 4 \cdot X + N_Y
|
||||||
|
\end{align}
|
||||||
|
mit $N_X, N_Y \overset{\text{iid}}{\sim} \mathcal{N}(0, 1)$ und den
|
||||||
|
Graphen $X \rightarrow Y$.
|
||||||
|
\only<2-9>{
|
||||||
|
Dann gilt:
|
||||||
|
\begin{align}
|
||||||
|
\mathbb{P}_\mathcal{S}^Y = \mathcal{N}(0, 4^2 + 1) &\onslide<3->{\neq \mathcal{N}(8, 1)} \onslide<4->{= \mathbb{P}_{\mathcal{S}, do(X:=2)}^{Y}} \onslide<5->{= \mathbb{P}_\mathcal{S}^{Y|X=2}\\}
|
||||||
|
&\onslide<6->{\neq \mathcal{N}(12, 1)} \onslide<7->{= \mathbb{P}_{\mathcal{S}, do(X:=3)}^{Y}} \onslide<8->{= \mathbb{P}_\mathcal{S}^{Y|X=3}}
|
||||||
|
\end{align}
|
||||||
|
\onslide<9->{$\Rightarrow$ Intervention auf $X$ beeinflusst die Verteilung von $Y$.}
|
||||||
|
}
|
||||||
|
\only<10-13>{
|
||||||
|
Aber:
|
||||||
|
|
||||||
|
\begin{align}
|
||||||
|
\mathbb{P}_{\mathcal{S}, do(Y:=2)}^{X} &= \mathcal{N}(0, 1)\\
|
||||||
|
\onslide<11->{&= \mathbb{P}_\mathcal{S}^X\\}
|
||||||
|
\onslide<12->{&= \mathbb{P}_{\mathcal{S}, do(Y:=3.14159)}^{X}\\}
|
||||||
|
\onslide<13->{&\neq \mathbb{P}_\mathcal{S}^{X|Y=2}}
|
||||||
|
\end{align}
|
||||||
|
}
|
||||||
|
\only<14->{\\
|
||||||
|
Beispiel: $X$ (rauchen) $\rightarrow Y$ (weiße Zähne)
|
||||||
|
\begin{itemize}
|
||||||
|
\item<15-> Es besteht eine Asymmetrie zwischen Ursache ($X$) und Effekt ($Y$).
|
||||||
|
\item<16-> $\mathbb{P}_{\mathcal{S}, do(Y:=\tilde{N}_Y)}^{X,Y} \Rightarrow X \perp\!\!\!\perp Y$
|
||||||
|
\item<17-> $\mathbb{P}_{\mathcal{S}, do(X:=\tilde{N}_X)}^{X,Y} \text{ und } Var(\tilde{N}_X) > 0 \Rightarrow X \not\perp\!\!\!\perp Y$
|
||||||
|
\end{itemize}
|
||||||
|
}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\section{Totaler kausaler Effekt}
|
||||||
|
\subsection{Totaler kausaler Effekt}
|
||||||
|
\begin{frame}{Kausaler Effekt}{}
|
||||||
|
\begin{center}
|
||||||
|
{\Huge Intuition?}
|
||||||
|
\end{center}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\begin{frame}{Totaler kausaler Effekt}
|
||||||
|
\begin{block}{Totaler kausaler Effekt}
|
||||||
|
Gegeben sei ein SEM $\mathcal{S}$. Dann gibt es einen
|
||||||
|
(totalen) kausalen Effekt von $X$ nach $Y$ genau dann wenn
|
||||||
|
\[\exists \tilde{N}_X : X \not\!\perp\!\!\!\perp Y \text{ in } \mathbb{P}_{\mathcal{S}, do(X:=\tilde{N}_X)}^{\mathbf{X}}\]
|
||||||
|
gilt.
|
||||||
|
\end{block}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\begin{frame}{Totaler kausaler Effekt: Äquivalenzen}
|
||||||
|
Folgende Aussagen sind äquivalent:
|
||||||
|
|
||||||
|
\begin{enumerate}[label=(\roman*)]
|
||||||
|
\item $\exists \tilde{N}_{X_1} \hphantom{\text{ mit vollem Support }}: X_1 \not\!\perp\!\!\!\perp X_2 \text{ in } \mathbb{P}_{\mathcal{S}, do(X_1:=\tilde{N}_{X_1})}^{\mathbf{X}}$
|
||||||
|
\item $\exists x^\triangle \exists x^\square: \mathbb{P}_{\mathcal{S}, do(X_1:=x^\triangle)}^{X_2} \neq \mathbb{P}_{\mathcal{S}, do(X_1:=x^\square)}^{X_2}$
|
||||||
|
\item $\exists x^\triangle \hphantom{\exists x^\square}: \mathbb{P}_{\mathcal{S}, do(X_1:=x^\triangle)}^{X_2} \neq \mathbb{P}_\mathcal{S}^{X_2}$.
|
||||||
|
\item $\forall \tilde{N}_{X_1} \text{ mit vollem Support }: X_1 \not\!\perp\!\!\!\perp X_2 \text{ in } \mathbb{P}_{\mathcal{S}, do(X_1:=\tilde{N}_{X_1})}^{\mathbf{X}}$
|
||||||
|
\end{enumerate}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\begin{frame}{Beispiel 2.2.6: Randomisierte Studie}
|
||||||
|
\begin{itemize}
|
||||||
|
\item<1-> Weise eine Behandlung $T$ zufällig (nach $\tilde{N_T}$) einem
|
||||||
|
Patienten zu. Das könnte auch ein Placebo sein.
|
||||||
|
\item<2-> Im SEM: Daten aus $\mathbb{P}_{\mathcal{S}, do(T:=\tilde{N_T})}^{\mathbf{X}}$
|
||||||
|
\item<3-> Falls immer noch Abhängigkeit zw. Behandlung und Erfolg
|
||||||
|
vorliegt $\Rightarrow T$ hat einen totalen kausalen Effekt auf
|
||||||
|
den Behandlungserfolg.
|
||||||
|
\end{itemize}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\begin{frame}{Beispiel 2.2.7: Nicolai's running-and-health Beispiel}
|
||||||
|
Das zugrundeliegende (\enquote{wahre}) SEM $\mathcal{S}$, welches die Daten
|
||||||
|
generierte, hat die Form:
|
||||||
|
|
||||||
|
\begin{align}
|
||||||
|
A &= N_A &&\text{mit } N_A \sim Ber(\nicefrac{1}{2})\\
|
||||||
|
H &= A + N_H \mod 2 &&\text{mit } N_H \sim Ber(\nicefrac{1}{3})\\
|
||||||
|
B &= H + N_B \mod 2 &&\text{mit } N_B \sim Ber(\nicefrac{1}{20})
|
||||||
|
\end{align}
|
||||||
|
|
||||||
|
mit dem Graphen $A \rightarrow H \rightarrow B$ und\\
|
||||||
|
$N_A, N_H, N_B$ unabhängig.
|
||||||
|
|
||||||
|
\begin{itemize}
|
||||||
|
\item<1-> $B$ ist hilfreicher für die Vorhersage von $H$ als $A$.
|
||||||
|
\item<2-> Intervention von $A$ hat auf $H$ einen größeren Einfluss als Intervention von $B$.
|
||||||
|
\end{itemize}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\begin{frame}{Proposition 2.2.9}
|
||||||
|
\begin{enumerate}[label=(\roman*)]
|
||||||
|
\item<1-> Falls es keinen gerichteten Pfad von $X$ nach $Y$ gibt, dann
|
||||||
|
gibt es keinen kausalen Effekt.
|
||||||
|
\item<2-> Manchmal gibt es einen gerichteten Pfad, aber keinen kausalen
|
||||||
|
Effekt.
|
||||||
|
\end{enumerate}
|
||||||
|
|
||||||
|
\onslide<3->{Beweis von (i): Folgt aus der Markov-Eigenschaft des
|
||||||
|
interventierten SEMs. }\onslide<4->{Nach dem Entfernen der
|
||||||
|
in $X$ eingehenden Kanten gilt: $X$ und $Y$ sind
|
||||||
|
$d$-separiert, falls es keinen direkten Pfad von $X$ nach
|
||||||
|
$Y$ gibt. \\}
|
||||||
|
\onslide<5->{Beweis von (ii) durch Gegenbeispiel: Sei
|
||||||
|
\begin{align}
|
||||||
|
X &= N_X\\
|
||||||
|
Z &= 2X + N_Z\\
|
||||||
|
Y &= 4X - 2Z + N_Y
|
||||||
|
\end{align}
|
||||||
|
Dann gilt: $Y = - 2N_Z + N_Y$ und daher $X \perp\!\!\!\perp$ für alle $N_X$. $\square$
|
||||||
|
}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
% \begin{frame}{Nierensteine}
|
||||||
|
% \begin{columns}
|
||||||
|
% \begin{column}{0.45\textwidth}
|
||||||
|
% \begin{center}\textbf{Modell A}\end{center}
|
||||||
|
% \end{column}
|
||||||
|
% \begin{column}{0.45\textwidth}
|
||||||
|
% \begin{center}\textbf{Modell B}\end{center}
|
||||||
|
% \end{column}
|
||||||
|
% \end{columns}
|
||||||
|
% \end{frame}
|
143
presentations/causality-presentation/pynb/Interventions.ipynb
Normal file
143
presentations/causality-presentation/pynb/Interventions.ipynb
Normal file
File diff suppressed because one or more lines are too long
Loading…
Add table
Add a link
Reference in a new issue