mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-19 11:38:05 +02:00
Added flashcards MWE
This commit is contained in:
parent
10ce13f48f
commit
7463f69cc4
3 changed files with 75 additions and 0 deletions
9
documents/flashcards/Makefile
Normal file
9
documents/flashcards/Makefile
Normal file
|
@ -0,0 +1,9 @@
|
|||
SOURCE = flashcards
|
||||
|
||||
make:
|
||||
pdflatex $(SOURCE).tex -output-format=pdf
|
||||
pdflatex $(SOURCE).tex -output-format=pdf
|
||||
make clean
|
||||
|
||||
clean:
|
||||
rm -rf $(TARGET) *.class *.html *.log *.aux *.out *.ind *.idx *.ilg *.toc *.bbl *.blg
|
54
documents/flashcards/flashcards.tex
Normal file
54
documents/flashcards/flashcards.tex
Normal file
|
@ -0,0 +1,54 @@
|
|||
\documentclass[mycards,frame]{flashcards}
|
||||
\usepackage{amsmath,amssymb}% math symbols / fonts
|
||||
\usepackage[utf8]{inputenc} % this is needed for umlauts
|
||||
\usepackage[ngerman]{babel} % this is needed for umlauts
|
||||
\usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
|
||||
\usepackage{enumitem}
|
||||
|
||||
\def\mdr{\ensuremath{\mathbb{R}}}
|
||||
\DeclareMathOperator{\Bild}{Bild}
|
||||
|
||||
\begin{document}
|
||||
\begin{flashcard}{ Tangentialebene }
|
||||
{ %In Vorlesung: 17.1
|
||||
Sei $S \subseteq \mdr^3$ eine reguläre Fläche, $s \in S$,
|
||||
$F: U \rightarrow V \cap S$ eine lokale Parametrisierung um $s$
|
||||
(d.~h. $s \in V$)
|
||||
\[(u,v) \mapsto (x(u,v), y(u,v), z(u,v))\]
|
||||
Für $p=F^{-1}(s) \in U$ sei
|
||||
\[ J_F(u,v) = \begin{pmatrix}
|
||||
\frac{\partial x}{\partial u} (p) & \frac{\partial x}{\partial v} (p)\\
|
||||
\frac{\partial y}{\partial u} (p) & \frac{\partial y}{\partial v} (p)\\
|
||||
\frac{\partial z}{\partial u} (p) & \frac{\partial z}{\partial v} (p)
|
||||
\end{pmatrix}\]
|
||||
und $D_P F: \mdr^2 \rightarrow \mdr^3$ die durch $J_F (p)$
|
||||
definierte lineare Abbildung.
|
||||
|
||||
Dann heißt $T_s S := \Bild(D_p F)$ die \textbf{Tangentialebene}
|
||||
an $s \in S$.
|
||||
}
|
||||
\end{flashcard}
|
||||
|
||||
\begin{flashcard}{ Normalenfeld\\Fläche, orientierbare }
|
||||
{ %In Vorlesung: Def.+Bem 17.5
|
||||
\begin{enumerate}[label=\alph*)]
|
||||
\item Ein \textbf{Normalenfeld} auf der
|
||||
Fläche $S$ ist eine Abbildung $n: S \rightarrow S^2 \subseteq \mdr^3$
|
||||
mit $n(s) \in T_s S^\perp$ für jedes $s \in S$.
|
||||
\item $S$ heißt \textbf{orientierbar},
|
||||
wenn es ein stetiges Normalenfeld auf $S$ gibt.
|
||||
\end{enumerate}
|
||||
}
|
||||
\end{flashcard}
|
||||
|
||||
\begin{flashcard}{ Normalenkrümmung }
|
||||
{
|
||||
In der Situation aus XY heißt die Krümmung $\kappa_\gamma(0)$
|
||||
der Kurve $\gamma$ in der Ebene $(s+ E)$ im Punkt $s$ die
|
||||
\textbf{Normalenkrümmung}\footnotemark von $S$ in $s$ in Richtung
|
||||
$x = \gamma'(0)$.
|
||||
|
||||
Man scheibt: $\kappa_\gamma(0) := \kappa_{\text{Nor}}(s, x)$
|
||||
}
|
||||
\end{flashcard}
|
||||
\end{document}
|
12
documents/flashcards/mycards.cfg
Normal file
12
documents/flashcards/mycards.cfg
Normal file
|
@ -0,0 +1,12 @@
|
|||
\NeedsTeXFormat{LaTeX2e}[1996/12/01]
|
||||
\ProvidesFile{avery5388.cfg}
|
||||
\newcommand{\cardpaper}{a4paper}
|
||||
\newcommand{\cardpapermode}{portrait}
|
||||
\newcommand{\cardrows}{4}
|
||||
\newcommand{\cardcolumns}{2}
|
||||
\setlength{\cardheight}{70mm}
|
||||
\setlength{\cardwidth}{100mm}
|
||||
\setlength{\topoffset}{2mm}
|
||||
\setlength{\oddoffset}{5mm}
|
||||
\setlength{\evenoffset}{5mm}
|
||||
\endinput
|
Loading…
Add table
Add a link
Reference in a new issue