mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-26 06:48:04 +02:00
(V, E) -> (E, K); added two examples; removed crap
This commit is contained in:
parent
71f296ac0b
commit
7253de8aba
11 changed files with 88 additions and 640 deletions
Binary file not shown.
|
@ -36,7 +36,7 @@ Kantenmenge bezeichnet.
|
|||
|
||||
\begin{frame}{Inzidenz}
|
||||
\begin{block}{Inzidenz}
|
||||
Sei $e \in E$ und $k = \Set{v_1, v_2} \in K$.
|
||||
Sei $e \in E$ und $k = \Set{e_1, e_2} \in K$.
|
||||
|
||||
$e$ heißt \textbf{inzident} zu $k :\Leftrightarrow e = e_1$ oder $e = e_2$
|
||||
\end{block}
|
||||
|
|
|
@ -30,7 +30,6 @@ Ein Graph heißt \textbf{eulersch}, wenn er einen eulerschen Kreis enthält.
|
|||
\pgfsetlayers{background,main}
|
||||
\begin{frame}{Eulerscher Kreis}
|
||||
\newcommand\n{5}
|
||||
\tikzstyle{selected edge} = [draw,line width=5pt,-,red!50]
|
||||
\begin{center}
|
||||
\adjustbox{max size={\textwidth}{0.8\textheight}}{
|
||||
\begin{tikzpicture}
|
||||
|
|
|
@ -130,9 +130,9 @@ seine \textbf{Länge}.
|
|||
|
||||
\begin{frame}{Geschlossener Kantenzug}
|
||||
\begin{block}{Geschlossener Kantenzug}
|
||||
Sei $G = (V, E)$ ein Graph und $A = (e_1, e_2 \dots, e_s)$ ein Kantenzug.
|
||||
Sei $G = (E, K)$ ein Graph und $A = (e_0, e_1, \dots, e_s)$ ein Kantenzug.
|
||||
|
||||
A heißt \textbf{geschlossen} $:\Leftrightarrow v_s = v_0$ .
|
||||
A heißt \textbf{geschlossen} $:\Leftrightarrow e_s = e_0$ .
|
||||
\end{block}
|
||||
|
||||
\begin{gallery}
|
||||
|
@ -149,9 +149,9 @@ A heißt \textbf{geschlossen} $:\Leftrightarrow v_s = v_0$ .
|
|||
|
||||
\begin{frame}{Weg}
|
||||
\begin{block}{Weg}
|
||||
Sei $G = (V, E)$ ein Graph und $A = (e_1, e_2 \dots, e_s)$ ein Kantenzug.
|
||||
Sei $G = (E, K)$ ein Graph und $A = (k_1, k_2 \dots, k_s)$ ein Kantenzug.
|
||||
|
||||
A heißt \textbf{Weg} $:\Leftrightarrow \forall_{i, j \in [1, s] \cap \mathbb{N}}: i \neq j \Rightarrow e_i \neq e_j$ .
|
||||
A heißt \textbf{Weg} $:\Leftrightarrow \forall_{i, j \in 1, \dots, s}: i \neq j \Rightarrow k_i \neq k_j$ .
|
||||
\end{block}
|
||||
|
||||
\pause
|
||||
|
@ -167,7 +167,7 @@ Achtung: Knoten dürfen mehrfach abgelaufen werden!
|
|||
|
||||
\begin{frame}{Kreis}
|
||||
\begin{block}{Kreis}
|
||||
Sei $G = (V, E)$ ein Graph und $A = (e_1, e_2 \dots, e_s)$ ein Kantenzug.
|
||||
Sei $G = (E, K)$ ein Graph und $A = (k_1, k_2 \dots, k_s)$ ein Kantenzug.
|
||||
|
||||
A heißt \textbf{Kreis} $:\Leftrightarrow A$ ist geschlossen und ein Weg.
|
||||
\end{block}
|
||||
|
@ -175,13 +175,20 @@ A heißt \textbf{Kreis} $:\Leftrightarrow A$ ist geschlossen und ein Weg.
|
|||
\pause
|
||||
|
||||
Manchmal wird das auch "`einfacher Kreis"' genannt.
|
||||
|
||||
\pause
|
||||
|
||||
\begin{gallery}
|
||||
\galleryimage[Green]{graphs/circle-one-facet}
|
||||
\galleryimage[Green]{graphs/circle-two-facets}
|
||||
\end{gallery}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Zusammenhängender Graph}
|
||||
\begin{block}{Zusammenhängender Graph}
|
||||
Sei $G = (V, E)$ ein Graph.
|
||||
Sei $G = (E, K)$ ein Graph.
|
||||
|
||||
$G$ heißt \textbf{zusammenhängend} $:\Leftrightarrow \forall v_1, v_2 \in V: $ Es ex. ein Kantenzug, der $v_1$ und $v_2$ verbindet
|
||||
$G$ heißt \textbf{zusammenhängend} $:\Leftrightarrow \forall e_1, e_2 \in E: $ Es ex. ein Kantenzug, der $e_1$ und $e_2$ verbindet
|
||||
\end{block}
|
||||
|
||||
\begin{gallery}
|
||||
|
|
|
@ -0,0 +1,36 @@
|
|||
\documentclass[varwidth=true, border=2pt]{standalone}
|
||||
\usepackage{tikz}
|
||||
\usetikzlibrary{arrows,positioning}
|
||||
\tikzset{
|
||||
%Define standard arrow tip
|
||||
>=stealth',
|
||||
% Define arrow style
|
||||
pil/.style={->,thick}
|
||||
}
|
||||
|
||||
\begin{document}
|
||||
\begin{tikzpicture}
|
||||
\node (a)[vertex] at (0,0) {};
|
||||
\node (b)[vertex] at (1,1) {};
|
||||
\node (c)[vertex] at (2,1) {};
|
||||
\node (d)[vertex] at (3,0) {};
|
||||
\node (e)[vertex] at (4,1) {};
|
||||
\node (f)[vertex] at (5,1) {};
|
||||
\node (g)[vertex] at (6,0) {};
|
||||
\node (h)[vertex] at (5,-1) {};
|
||||
\node (i)[vertex] at (4,-1) {};
|
||||
%\node (j)[vertex] at (3,0) {};
|
||||
\node (k)[vertex] at (2,-1) {};
|
||||
\node (l)[vertex] at (1,-1) {};
|
||||
\node (m)[vertex] at (2,2) {};
|
||||
\node (n)[vertex] at (3,2) {};
|
||||
|
||||
\foreach \from/\to in {a/b,b/c,c/d,d/k,k/l,l/a}
|
||||
\draw[selected edge] (\from) -- (\to);
|
||||
|
||||
\foreach \from/\to in {a/b,b/c,c/d,d/e,e/f,f/g,g/h,h/i,i/d,d/k,k/l,l/a}
|
||||
\draw[line width=2pt] (\from) -- (\to);
|
||||
\draw[line width=2pt] (b) -- (m);
|
||||
\draw[line width=2pt] (m) -- (n);
|
||||
\end{tikzpicture}
|
||||
\end{document}
|
|
@ -0,0 +1,36 @@
|
|||
\documentclass[varwidth=true, border=2pt]{standalone}
|
||||
\usepackage{tikz}
|
||||
\usetikzlibrary{arrows,positioning}
|
||||
\tikzset{
|
||||
%Define standard arrow tip
|
||||
>=stealth',
|
||||
% Define arrow style
|
||||
pil/.style={->,thick}
|
||||
}
|
||||
|
||||
\begin{document}
|
||||
\begin{tikzpicture}
|
||||
\node (a)[vertex] at (0,0) {};
|
||||
\node (b)[vertex] at (1,1) {};
|
||||
\node (c)[vertex] at (2,1) {};
|
||||
\node (d)[vertex] at (3,0) {};
|
||||
\node (e)[vertex] at (4,1) {};
|
||||
\node (f)[vertex] at (5,1) {};
|
||||
\node (g)[vertex] at (6,0) {};
|
||||
\node (h)[vertex] at (5,-1) {};
|
||||
\node (i)[vertex] at (4,-1) {};
|
||||
%\node (j)[vertex] at (3,0) {};
|
||||
\node (k)[vertex] at (2,-1) {};
|
||||
\node (l)[vertex] at (1,-1) {};
|
||||
\node (m)[vertex] at (2,2) {};
|
||||
\node (n)[vertex] at (3,2) {};
|
||||
|
||||
\foreach \from/\to in {a/b,b/c,c/d,d/e,e/f,f/g,g/h,h/i,i/d,d/k,k/l,l/a}
|
||||
\draw[selected edge] (\from) -- (\to);
|
||||
|
||||
\foreach \from/\to in {a/b,b/c,c/d,d/e,e/f,f/g,g/h,h/i,i/d,d/k,k/l,l/a}
|
||||
\draw[line width=2pt] (\from) -- (\to);
|
||||
\draw[line width=2pt] (b) -- (m);
|
||||
\draw[line width=2pt] (m) -- (n);
|
||||
\end{tikzpicture}
|
||||
\end{document}
|
Loading…
Add table
Add a link
Reference in a new issue