mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-26 06:48:04 +02:00
Symbolverzeichnis erweitert; Bild hinzugefügt
This commit is contained in:
parent
6535e529de
commit
66c298d738
5 changed files with 111 additions and 3 deletions
Binary file not shown.
|
@ -21,7 +21,7 @@
|
|||
\usepackage{tikz}
|
||||
\usepackage{tikz-3dplot}
|
||||
\usepackage{tkz-fct}
|
||||
\usetikzlibrary{3d,calc,intersections,er,arrows,positioning,shapes.misc}
|
||||
\usetikzlibrary{3d,calc,intersections,er,arrows,positioning,shapes.misc,patterns}
|
||||
\usepackage{shortcuts}
|
||||
|
||||
% Setze den richtigen Namen für das Glossar und das Stichwortverzeichnis
|
||||
|
|
|
@ -169,7 +169,7 @@ Auch gibt es Mengen, die sowohl abgeschlossen als auch offen sind.
|
|||
|
||||
\begin{definition} \xindex{Quotiententopologie}
|
||||
Sei $X$ topologischer Raum, $\sim$ eine Äquivalenzrelation auf $X$,
|
||||
$\overline{X} = X / \sim$ sei die Menge der Äquivalenzklassen,
|
||||
$\overline{X} = X /_\sim$ sei die Menge der Äquivalenzklassen,
|
||||
$\pi: x \rightarrow \overline{x}, \;\;\; x \mapsto [x]_\sim$,
|
||||
$U \subseteq \overline{X}$ heißt offen, wenn $\pi^{-1} (U) \subseteq X$
|
||||
offen ist. Dadurch wird eine Topologie auf $\overline{X}$ definiert.
|
||||
|
@ -282,6 +282,11 @@ Auch gibt es Mengen, die sowohl abgeschlossen als auch offen sind.
|
|||
\item Jeder Teilraum um $X$ ist Hausdorffsch.
|
||||
\item $X_1 \times X_2$ ist Hausdorffsch.
|
||||
\end{enumerate}
|
||||
\begin{figure}[htp]
|
||||
\centering
|
||||
\input{figures/topology-metric-hausdorff}
|
||||
\caption{Wenn $X_1, X_2$ hausdorffsch sind, dann auch $X_1 \times X_2$}
|
||||
\end{figure}
|
||||
\end{bemerkung}
|
||||
|
||||
\todo[inline]{TODO: Es fehlt eine \enquote{Beweisskizze}, die den $\mdr^2$ darstellt sowie zwei Punkte $(x_1, y_1)$ und $(x_2, y_2)$ sowie ihre (disjunkten) Umgebungen bzgl. der $X_1$-Achse.}
|
||||
|
||||
|
|
|
@ -58,6 +58,13 @@
|
|||
sort=MengenoperationNSubsetneq
|
||||
}
|
||||
|
||||
\newglossaryentry{setminus}
|
||||
{
|
||||
name={\ensuremath{A \setminus B}},
|
||||
description={$A$ ohne $B$},
|
||||
sort=MengenoperationNSetminus
|
||||
}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Zahlenmengen %
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
@ -113,6 +120,20 @@
|
|||
sort=ZZZSkalarprodukt
|
||||
}
|
||||
|
||||
\newglossaryentry{Modulo}
|
||||
{
|
||||
name={\ensuremath{X /_\sim}},
|
||||
description={$X$ modulo $\sim$},
|
||||
sort=ZZZAuequivalenzModulo
|
||||
}
|
||||
|
||||
\newglossaryentry{Modulo-Aequivalenzklasse}
|
||||
{
|
||||
name={\ensuremath{[x]_\sim}},
|
||||
description={Äquivalenzklassen von $x$ bzgl. $\sim$},
|
||||
sort=ZZZAuequivalenzKlassen
|
||||
}
|
||||
|
||||
\newglossaryentry{Norm}
|
||||
{
|
||||
name={\ensuremath{\| x \|}},
|
||||
|
|
82
documents/GeoTopo/figures/topology-metric-hausdorff.tex
Normal file
82
documents/GeoTopo/figures/topology-metric-hausdorff.tex
Normal file
|
@ -0,0 +1,82 @@
|
|||
% defining the new dimensions and parameters
|
||||
\newlength{\hatchspread}
|
||||
\newlength{\hatchthickness}
|
||||
\newlength{\hatchshift}
|
||||
\newcommand{\hatchcolor}{}
|
||||
% declaring the keys in tikz
|
||||
\tikzset{hatchspread/.code={\setlength{\hatchspread}{#1}},
|
||||
hatchthickness/.code={\setlength{\hatchthickness}{#1}},
|
||||
hatchshift/.code={\setlength{\hatchshift}{#1}},% must be >= 0
|
||||
hatchcolor/.code={\renewcommand{\hatchcolor}{#1}}}
|
||||
% setting the default values
|
||||
\tikzset{hatchspread=6pt,
|
||||
hatchthickness=0.4pt,
|
||||
hatchshift=0pt,% must be >= 0
|
||||
hatchcolor=black}
|
||||
% declaring the pattern
|
||||
\pgfdeclarepatternformonly[\hatchspread,\hatchthickness,\hatchshift,\hatchcolor]% variables
|
||||
{custom north west lines}% name
|
||||
{\pgfqpoint{\dimexpr-2\hatchthickness}{\dimexpr-2\hatchthickness}}% lower left corner
|
||||
{\pgfqpoint{\dimexpr\hatchspread+2\hatchthickness}{\dimexpr\hatchspread+2\hatchthickness}}% upper right corner
|
||||
{\pgfqpoint{\dimexpr\hatchspread}{\dimexpr\hatchspread}}% tile size
|
||||
{% shape description
|
||||
\pgfsetlinewidth{\hatchthickness}
|
||||
\pgfpathmoveto{\pgfqpoint{0pt}{\dimexpr\hatchspread+\hatchshift}}
|
||||
\pgfpathlineto{\pgfqpoint{\dimexpr\hatchspread+0.15pt+\hatchshift}{-0.15pt}}
|
||||
\ifdim \hatchshift > 0pt
|
||||
\pgfpathmoveto{\pgfqpoint{0pt}{\hatchshift}}
|
||||
\pgfpathlineto{\pgfqpoint{\dimexpr0.15pt+\hatchshift}{-0.15pt}}
|
||||
\fi
|
||||
\pgfsetstrokecolor{\hatchcolor}
|
||||
% \pgfsetdash{{1pt}{1pt}}{0pt}% dashing cannot work correctly in all situation this way
|
||||
\pgfusepath{stroke}
|
||||
}
|
||||
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[
|
||||
legend pos=south west,
|
||||
axis x line=middle,
|
||||
axis y line=middle,
|
||||
%grid = major,
|
||||
%width=9cm,
|
||||
%height=4.5cm,
|
||||
grid style={dashed, gray!30},
|
||||
xmin=-1, % start the diagram at this x-coordinate
|
||||
xmax= 6, % end the diagram at this x-coordinate
|
||||
ymin=-0.25, % start the diagram at this y-coordinate
|
||||
ymax= 5, % end the diagram at this y-coordinate
|
||||
axis background/.style={fill=white},
|
||||
xlabel=$X_1$,
|
||||
ylabel=$X_2$,
|
||||
%xticklabels={,,},
|
||||
%yticklabels={,,},
|
||||
%xtick={-1,0,1,2,3,4,5},
|
||||
%ytick={-1,0,1,2,3,4,5},
|
||||
ticks=none,
|
||||
%tick align=outside,
|
||||
enlargelimits=true,
|
||||
tension=0.08]
|
||||
\addplot[hatchcolor=red,mark=none, pattern=custom north west lines, draw=none] coordinates {(0.5, 0) (0.5,5) (1.5,5) (1.5,0) };
|
||||
\addplot[red,mark=none, thick] coordinates {(0.5, 0) (0.5,5)};
|
||||
\addplot[red,mark=none, thick] coordinates {(1.5, 0) (1.5,5)};
|
||||
|
||||
\addplot[hatchcolor=red,mark=none, pattern=custom north west lines, draw=none] coordinates {(4.5, 0) (4.5,5) (5.5,5) (5.5,0) };
|
||||
\addplot[red,mark=none, thick] coordinates {(4.5, 0) (4.5,5)};
|
||||
\addplot[red,mark=none, thick] coordinates {(5.5, 0) (5.5,5)};
|
||||
|
||||
|
||||
\addplot[mark=none, dashed] coordinates {(1, 0) (1,3)};
|
||||
\addplot[mark=none, dashed] coordinates {(5, 0) (5,3)};
|
||||
|
||||
\addplot[mark=x] coordinates {(1, 3)};
|
||||
\addplot[mark=x] coordinates {(5, 3)};
|
||||
\node at (axis cs:1,3) [anchor=north west] {$(x_1, y_1)$};
|
||||
\node at (axis cs:5,3) [anchor=north west] {$(x_2, y_2)$};
|
||||
|
||||
\node at (axis cs:1,0) [anchor=north] {$x_1$};
|
||||
\node at (axis cs:5,0) [anchor=north] {$x_2$};
|
||||
|
||||
\node[red] at (axis cs:1,-0.3) [anchor=north] {$U_1 \times X_2$};
|
||||
\node[red] at (axis cs:5,-0.3) [anchor=north] {$U_2 \times X_2$};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
Loading…
Add table
Add a link
Reference in a new issue