mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-26 06:48:04 +02:00
Symbolverzeichnis erweitert; neue Bilder
This commit is contained in:
parent
c2109ebc5a
commit
6535e529de
29 changed files with 439 additions and 26 deletions
Binary file not shown.
|
@ -8,6 +8,8 @@
|
|||
\usepackage{makeidx} % for automatically generation of an index
|
||||
\usepackage[bookmarks,bookmarksnumbered,hypertexnames=false,pdfpagelayout=OneColumn,colorlinks,hyperindex=false]{hyperref} % has to be after makeidx
|
||||
\usepackage[xindy,toc,nonumberlist]{glossaries} % for symbol table, has to be after hyperref
|
||||
\usepackage{glossary-mcols}
|
||||
%\glossarystyle{mcolindex} % two column design for glossary
|
||||
\usepackage{enumerate}
|
||||
\usepackage{braket} % needed for \Set
|
||||
\usepackage{csquotes}
|
||||
|
|
|
@ -137,27 +137,34 @@ Auch gibt es Mengen, die sowohl abgeschlossen als auch offen sind.
|
|||
Umgebungen $U_i$ um $x_i$ mit $i=1,2$ gibt, sodass $U_1 \times U_2 \subseteq U$
|
||||
gilt.
|
||||
|
||||
\begin{figure}[htp]
|
||||
\centering
|
||||
\input{figures/neighbourhood-topology}
|
||||
\caption{Zu $x=(x_1, x_2)$ gibt es Umgebungen $U_1, U_2$ mit $U_1 \times U_2 \subseteq U$}
|
||||
\end{figure}
|
||||
|
||||
$\fT = \Set{U \subseteq X_1 \times X_2 | U \text{ offen}}$
|
||||
ist eine Topologie auf $X_1 \times X_2$. Sie heißt \textbf{Produkttopologie}.
|
||||
$\fB = \Set{U_1 \times U_2 | U_i \text{ offen in } X_i, i=1,2}$
|
||||
ist eine Basis von $\fT$.
|
||||
\end{definition}
|
||||
|
||||
\begin{figure}[htp]
|
||||
\centering
|
||||
\input{figures/neighbourhood-topology}
|
||||
\caption{Zu $x=(x_1, x_2)$ gibt es Umgebungen $U_1, U_2$ mit $U_1 \times U_2 \subseteq U$}
|
||||
\end{figure}
|
||||
|
||||
\begin{beispiel}
|
||||
\begin{enumerate}[1)]
|
||||
\item $X_1 = X_2 = \mdr$ mit euklidischer Topologie.
|
||||
\item $X_1 = X_2 = \mdr$ mit Zariski-Topologie.
|
||||
$\fT$ Produkttopologie auf $\mdr^2$: $U_1 \times U_2$
|
||||
\item $X_1 = X_2 = \mdr$ mit euklidischer Topologie.\\
|
||||
$\Rightarrow$ Die Produkttopologie auf $\mdr \times \mdr = \mdr^2$
|
||||
stimmt mit der euklidischen Topologie auf $\mdr^2$ überein.\\
|
||||
\todo{Bild einfügen}
|
||||
stimmt mit der euklidischen Topologie auf $\mdr^2$ überein.
|
||||
\item $X_1 = X_2 = \mdr$ mit Zariski-Topologie.
|
||||
$\fT$ Produkttopologie auf $\mdr^2$: $U_1 \times U_2$\\
|
||||
(Siehe Abb. \ref{fig:zariski-topologie})
|
||||
\end{enumerate}
|
||||
|
||||
\begin{figure}[htp]
|
||||
\centering
|
||||
\input{figures/zariski-topology}
|
||||
\caption{Zariski-Topologie auf $\mdr^2$}
|
||||
\label{fig:zariski-topologie}
|
||||
\end{figure}
|
||||
\end{beispiel}
|
||||
|
||||
\begin{definition} \xindex{Quotiententopologie}
|
||||
|
@ -188,8 +195,7 @@ Auch gibt es Mengen, die sowohl abgeschlossen als auch offen sind.
|
|||
&\gdw x \text{ und } y \text{ liegen auf der gleichen Ursprungsgerade}
|
||||
\end{align*}
|
||||
\[\overline{X} = \mathbb{P}^n(\mdr)\]
|
||||
Also für $n=1$:
|
||||
|
||||
Also für $n=1$:\nopagebreak\\
|
||||
\input{figures/ursprungsgeraden}
|
||||
\end{beispiel}
|
||||
|
||||
|
@ -215,33 +221,44 @@ Auch gibt es Mengen, die sowohl abgeschlossen als auch offen sind.
|
|||
|
||||
\begin{beispiel}
|
||||
Sei $V$ ein euklidischer oder hermiteischer Vektorraum mit Skalarprodukt
|
||||
$\langle \cdot \rangle$.
|
||||
$\langle \cdot , \cdot \rangle$.
|
||||
Dann wird $V$ durch $d(x,y) := \sqrt{\langle x-y, x-y \rangle}$ zum metrischen Raum.
|
||||
\end{beispiel}
|
||||
|
||||
\begin{beispiel}[diskrete Metrik] \xindex{Metrik!diskrete} \xindex{Topologie!diskrete}
|
||||
Sei $X$ eine Menge. Dann heißt
|
||||
\[d(x,y) = \begin{cases}
|
||||
0: & \text{, falls } x=y\\
|
||||
1: & \text{, falls } x \neq y
|
||||
0 & \text{falls } x=y\\
|
||||
1 & \text{falls } x \neq y
|
||||
\end{cases}\]
|
||||
die \textbf{diskrete Metrik}. Die Metrik $d$ induziert die
|
||||
\textbf{diskrete Topologie}.
|
||||
\end{beispiel}
|
||||
|
||||
\begin{beispiel}
|
||||
$X = \mdr^2$ und $d\left ((x_1, y_1), (x_2, y_2)\right ) := \max{\|x_1 - x_2\|, \|y_1 - y_2\|}$
|
||||
$X = \mdr^2$ und $d\left ((x_1, y_1), (x_2, y_2)\right ) := \max(\|x_1 - x_2\|, \|y_1 - y_2\|)$
|
||||
ist Metrik.
|
||||
|
||||
\todo[inline]{Bild von $\fB_r(0)$ erstellen und einfügen (Quadrat der Seitenlänge $2r$)}
|
||||
|
||||
\emph{Beobachtung:} $d$ erzeugt die eukldische Topologie.
|
||||
|
||||
\todo[inline]{Bild von Quadrat in Kreis in Quadrat ... erstellen und einfügen.}
|
||||
\begin{figure}[ht]
|
||||
\centering
|
||||
\subfigure[$\fB_r(0)$]{
|
||||
\input{figures/open-square}
|
||||
\label{fig:open-square}
|
||||
}%
|
||||
\subfigure[Euklidische Topologie]{
|
||||
\input{figures/quadrat-in-kreis-in-dots}
|
||||
\label{fig:quadrat-in-kreis-in-dots}
|
||||
}%
|
||||
\label{Formen}
|
||||
\caption{Veranschaulichungen zur Metrik $d$}
|
||||
\end{figure}
|
||||
|
||||
\end{beispiel}
|
||||
|
||||
\begin{beispiel}[SNCF-Metrik] \xindex{Metrik!SNCF}
|
||||
$X = \mdr^2$ \footnote{Diese Metrik wird auch \enquote{\href{https://de.wikipedia.org/wiki/Franz\%C3\%B6sische_Eisenbahnmetrik}{französische Eisenbahnmetrik}} genannt.}
|
||||
\begin{beispiel}[SNCF-Metrik\footnote{Diese Metrik wird auch \enquote{\href{https://de.wikipedia.org/wiki/Franz\%C3\%B6sische_Eisenbahnmetrik}{französische Eisenbahnmetrik}} genannt.}] \xindex{Metrik!SNCF}
|
||||
$X = \mdr^2$
|
||||
|
||||
\input{figures/sncf-metrik}
|
||||
\end{beispiel}
|
||||
|
|
|
@ -11,6 +11,13 @@
|
|||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Mengenoperationen %
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\newglossaryentry{Potenzmenge}
|
||||
{
|
||||
name={\ensuremath{\mathcal{P}(M)}},
|
||||
description={Potenzmenge von $M$},
|
||||
sort=MengenoperationNPotenzmenge
|
||||
}
|
||||
|
||||
\newglossaryentry{Abschluss}
|
||||
{
|
||||
name={\ensuremath{\overline{M}}},
|
||||
|
@ -90,6 +97,35 @@
|
|||
sort=KoerperREinheiten
|
||||
}
|
||||
|
||||
\newglossaryentry{Projektion}
|
||||
{
|
||||
name={\ensuremath{\mathbb{P}}},
|
||||
description={Projektion},
|
||||
sort=KoerperXProjektion
|
||||
}
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Sonstiges %
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\newglossaryentry{Skalarprodukt}
|
||||
{
|
||||
name={\ensuremath{\langle \cdot , \cdot \rangle}},
|
||||
description={Skalarprodukt},
|
||||
sort=ZZZSkalarprodukt
|
||||
}
|
||||
|
||||
\newglossaryentry{Norm}
|
||||
{
|
||||
name={\ensuremath{\| x \|}},
|
||||
description={Norm von $x$},
|
||||
sort=ZZZNorm
|
||||
}
|
||||
|
||||
\newglossaryentry{Betrag}
|
||||
{
|
||||
name={\ensuremath{| x |}},
|
||||
description={Betrag von $x$},
|
||||
sort=ZZZNormBetrag
|
||||
}
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Fraktale Symbole %
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
|
|
@ -17,7 +17,7 @@
|
|||
\draw [decorate,decoration={brace,mirror,raise=12pt}] (axis cs:1.5,0) -- (axis cs:2.5,0) node [midway,below=16pt] {$U_1$};
|
||||
}]
|
||||
|
||||
\addplot[mark=none, orange, smooth, thick, fill=orange!30] coordinates {(1,1) (2,0.5) (3,1.5) (3,2) (3.5,3) (3.2, 5) (2.2, 4.7) (1.5, 4.2) (1.1, 3.9) (0.9, 2.5) (1,1)};
|
||||
\addplot[mark=none, orange, smooth cycle, thick, fill=orange!30] coordinates {(1,1) (2,0.5) (3,1.5) (3,2) (3.5,3) (3.2, 5) (2.2, 4.7) (1.5, 4.2) (1.1, 3.9) (0.9, 2.5)};
|
||||
\node[orange] at (axis cs:4,4) [anchor=south] {$U$};
|
||||
|
||||
% Draw help lines
|
||||
|
|
27
documents/GeoTopo/figures/open-square.tex
Normal file
27
documents/GeoTopo/figures/open-square.tex
Normal file
|
@ -0,0 +1,27 @@
|
|||
\begin{tikzpicture}
|
||||
\begin{axis}[
|
||||
axis x line=middle,
|
||||
axis y line=middle,
|
||||
xmin=-1.5, % start the diagram at this x-coordinate
|
||||
xmax= 1.5, % end the diagram at this x-coordinate
|
||||
ymin=-1.5, % start the diagram at this y-coordinate
|
||||
ymax= 1.5, % end the diagram at this y-coordinate
|
||||
ticks=none,
|
||||
enlargelimits=true,
|
||||
after end axis/.code={
|
||||
\draw [decorate,decoration={brace,mirror,raise=2pt}] (axis cs:0,1) -- (axis cs:-1,1) node [midway,above=5pt] {$r$};
|
||||
\draw [decorate,decoration={brace,mirror,raise=2pt}] (axis cs:1,1) -- (axis cs:0,1) node [midway,above=5pt] {$r$};
|
||||
\draw [decorate,decoration={brace,mirror,raise=2pt}] (axis cs:1,0) -- (axis cs:1,1) node [midway,right=5pt] {$r$};
|
||||
\draw [decorate,decoration={brace,mirror,raise=2pt}] (axis cs:1,-1) -- (axis cs:1,0) node [midway,right=5pt] {$r$};
|
||||
}]
|
||||
|
||||
|
||||
% Draw solid square
|
||||
\addplot[mark=none, thick] coordinates {(-1,-1) (1,-1) (1,1) (-1,1) (-1,-1)};
|
||||
\addplot[mark=*] coordinates {(0,0)};
|
||||
|
||||
% Draw axis text
|
||||
\node at (axis cs:-1,0.5) [anchor=east] {$\mathfrak{B}_r(0) = $};
|
||||
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
9
documents/GeoTopo/figures/quadrat-in-kreis-in-dots.tex
Normal file
9
documents/GeoTopo/figures/quadrat-in-kreis-in-dots.tex
Normal file
|
@ -0,0 +1,9 @@
|
|||
\begin{tikzpicture}[thick]
|
||||
\draw (-1,-1) -- (1,-1) -- (1,1) -- (-1,1) -- cycle;
|
||||
\draw (0cm,0cm) circle(0.9cm);
|
||||
|
||||
\begin{scope}[scale=1.7]
|
||||
\draw (-1,-1) -- (1,-1) -- (1,1) -- (-1,1) -- cycle;
|
||||
\draw (0cm,0cm) circle(0.9cm);
|
||||
\end{scope}
|
||||
\end{tikzpicture}
|
|
@ -1,6 +1,6 @@
|
|||
\begin{tikzpicture}
|
||||
\begin{axis}[
|
||||
legend pos=south east,
|
||||
legend pos=south east,
|
||||
axis x line=middle,
|
||||
axis y line=middle,
|
||||
%grid = major,
|
||||
|
|
33
documents/GeoTopo/figures/zariski-topology.tex
Normal file
33
documents/GeoTopo/figures/zariski-topology.tex
Normal file
|
@ -0,0 +1,33 @@
|
|||
\begin{tikzpicture}
|
||||
\begin{axis}[
|
||||
axis x line=middle,
|
||||
axis y line=middle,
|
||||
grid = major,
|
||||
grid style={dashed, gray!30},
|
||||
xmin= 0, % start the diagram at this x-coordinate
|
||||
xmax= 5, % end the diagram at this x-coordinate
|
||||
ymin= 0, % start the diagram at this y-coordinate
|
||||
ymax= 5, % end the diagram at this y-coordinate
|
||||
xtick={-1,0,1,2,3,4,5},
|
||||
ytick={-1,0,1,2,3,4,5},
|
||||
xlabel={$U_1 = \mathbb{R} \setminus \mathbb{N}$},
|
||||
xlabel style={xshift=-2.5cm,yshift=-0.7cm},
|
||||
ylabel={$U_2 = \mathbb{R} \setminus \mathbb{N}$},
|
||||
ylabel style={rotate=-90, xshift=1.5cm},
|
||||
xticklabels={,,},
|
||||
yticklabels={,,},
|
||||
tick align=outside,
|
||||
enlargelimits=true]
|
||||
|
||||
|
||||
% Draw solid square
|
||||
\addplot[mark=o] coordinates {(0,0) (1,0) (2,0) (3,0) (4,0) (5,0)};
|
||||
\addplot[mark=o] coordinates {(0,0) (0,1) (0,2) (0,3) (0,4) (0,5)};
|
||||
|
||||
\foreach \i in {0,1,2,3,4,5} {
|
||||
\addplot[mark=none] coordinates {(-0.2,\i) (5.2,\i)};
|
||||
\addplot[mark=none] coordinates {(\i,-0.2) (\i,5.2)};
|
||||
}
|
||||
\addplot[mark=none] coordinates {(0,2) (5,2)};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
Loading…
Add table
Add a link
Reference in a new issue