mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-26 06:48:04 +02:00
misc
This commit is contained in:
parent
e63c4f3335
commit
61d7185054
9 changed files with 228 additions and 2 deletions
|
@ -0,0 +1,50 @@
|
|||
\documentclass{article}
|
||||
\usepackage[pdftex,active,tightpage]{preview}
|
||||
\setlength\PreviewBorder{2mm}
|
||||
|
||||
\usepackage[utf8]{inputenc} % this is needed for umlauts
|
||||
\usepackage[ngerman]{babel} % this is needed for umlauts
|
||||
\usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
|
||||
\usepackage{amssymb,amsmath,amsfonts} % nice math rendering
|
||||
\usepackage{braket} % needed for \Set
|
||||
\usepackage{algorithm,algpseudocode}
|
||||
|
||||
\usepackage{tikz}
|
||||
\usetikzlibrary{decorations.pathreplacing,calc}
|
||||
\newcommand{\tikzmark}[1]{\tikz[overlay,remember picture] \node (#1) {};}
|
||||
\newcommand*{\AddNote}[4]{%
|
||||
\begin{tikzpicture}[overlay, remember picture]
|
||||
\draw [decoration={brace,amplitude=0.5em},decorate,very thick]
|
||||
($(#3)!(#1.north)!($(#3)-(0,1)$)$) --
|
||||
($(#3)!(#2.south)!($(#3)-(0,1)$)$)
|
||||
node [align=center, text width=2.5cm, pos=0.5, anchor=west] {#4};
|
||||
\end{tikzpicture}
|
||||
}%
|
||||
|
||||
\begin{document}
|
||||
\begin{preview}
|
||||
\begin{algorithm}[H]
|
||||
\begin{algorithmic}
|
||||
\Require $Z \in \mathbb{R}_{\geq 0}, b \in \mathbb{N}_{\geq 2}$
|
||||
\State $p\gets 0$\tikzmark{top}
|
||||
\While{$b^p > Z$}\tikzmark{right}
|
||||
\State $p\gets p+1$
|
||||
\EndWhile
|
||||
\State $i\gets p-1$\tikzmark{bottom}
|
||||
\\
|
||||
\While{$Z \neq 0$}\tikzmark{top2}
|
||||
\State $y_i\gets Z\,\mbox{div}\, b^i$
|
||||
\State $R\gets Z\,\mbox{mod}\, b^i$
|
||||
\State $Z\gets R$
|
||||
\State $i\gets i-1$
|
||||
\EndWhile\tikzmark{bottom2}
|
||||
\\
|
||||
\State \textbf{Ergebnis:} $y_{p-1} y_{p-2} \dots y_0, y_{-1} \dots y_{i+1}$
|
||||
\end{algorithmic}
|
||||
\caption{Euklidischer Algorithmus zum Basiswechsel}
|
||||
\AddNote{top}{bottom}{right}{Berechne $p$ sodass gilt: $b^p \leq Z < b^{p+1}$}
|
||||
\AddNote{top2}{bottom2}{right}{In jedem Schritt wird eine Ziffer berechnet}
|
||||
\label{alg:euclidBaseTransformation}
|
||||
\end{algorithm}
|
||||
\end{preview}
|
||||
\end{document}
|
Loading…
Add table
Add a link
Reference in a new issue