mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-19 11:38:05 +02:00
improved proof
This commit is contained in:
parent
c752ff59b4
commit
5e4b2293b9
2 changed files with 35 additions and 69 deletions
Binary file not shown.
|
@ -431,82 +431,48 @@ $b, c, d \in \mdr$ be a function.
|
|||
\end{theorem}
|
||||
|
||||
\begin{proof}
|
||||
Let $g : \mdr \rightarrow \mdr$ be a polynomial of degree 5
|
||||
\[g(x) = \tilde{a} x^5 + \tilde{b} x^4 + \tilde{c} x^3 + \tilde{d} x^2 + \tilde{e} x + \tilde{f}\]
|
||||
with $\tilde{a} \in \mdr_{> 0},\; \tilde{b} \in \mdr \setminus \Set{0}$ and $\tilde{c}, \tilde{d}, \tilde{e}, \tilde{f} \in \mdr$.
|
||||
Then, according to the Abel-Ruffini theorem, the equation
|
||||
\[g(x) = 0\]
|
||||
cannot be solved algebraicly.
|
||||
Suppose you could solve the closest point problem for arbitrary
|
||||
cubic functions $f = ax^3 + bx^2 + cx + d$ and arbitrary points $P = (x_P, y_P)$.
|
||||
|
||||
%But lets define $a := \frac{\sqrt{\tilde{a}}}{3}$, $b := \frac{\tilde{b}}{5a}$,
|
||||
%$c : = \frac{\frac{\tilde{c}}{2} - b^2}{2a}$, $d := \frac{\tilde{d}}{3} - bc + $
|
||||
Then you could solve the following problem for $x$:
|
||||
\begin{align}
|
||||
0 &\stackrel{!}{=} \left ((d_{P,f}(x))^2 \right )'
|
||||
&=-2 x_p + 2x -2y_p(f(x))' + (f(x)^2)'\\
|
||||
&= 2 f(x) \cdot f'(x) - 2 y_p f'(x) + 2x - 2 x_p\\
|
||||
&= f(x) \cdot f'(x) - y_p f'(x) + x - x_p\\
|
||||
&= \underbrace{f'(x) \cdot \left (f(x) - y_p \right )}_{\text{Polynomial of degree 5}} + x - x_p
|
||||
\end{align}
|
||||
|
||||
So you can find $a, b, c, d, x_p, y_p$ such that
|
||||
General algebraic equations of degree 5 don't have a solution formula.\footnote{TODO: Quelle}
|
||||
Although here seems to be more structure, the resulting algebraic
|
||||
equation can be almost any polynomial of degree 5:\footnote{Thanks to Peter Košinár on \href{http://math.stackexchange.com/a/584814/6876}{math.stackexchange.com} for this one}
|
||||
|
||||
\begin{align}
|
||||
g(x) &= \underbrace{3 a^2}_{= \tilde{a}} x^5 + \underbrace{5ab}_{= \tilde{b}}x^4 + \underbrace{2(2ac + b^2 )}_{= \tilde{c}}x^3 &+& \underbrace{3(ad+bc-ay_p)}_{= \tilde{d}} x^2 \\
|
||||
& &+& \underbrace{(2 b d+c^2+1-2 b y_p)}_{= \tilde{e}}x+\underbrace{c d-c y_p-x_p}_{= \tilde{f}}\\
|
||||
&= f'(x) \cdot \left (f(x) - y_p \right ) + (x - x_p)\\
|
||||
&= f(x) \cdot f'(x) - y_p f'(x) + x - x_p
|
||||
\end{align}
|
||||
\begin{align}
|
||||
0 &\stackrel{!}{=} f'(x) \cdot \left (f(x) - y_p \right ) + (x - x_p)\\
|
||||
&= \underbrace{3 a^2}_{= \tilde{a}} x^5 + \underbrace{5ab}_{\tilde{b}}x^4 + \underbrace{2(2ac + b^2 )}_{=: \tilde{c}}x^3 &+& \underbrace{3(ad+bc-ay_p)}_{\tilde{d}} x^2 \\
|
||||
& &+& \underbrace{(2 b d+c^2+1-2 b y_p)}_{=: \tilde{e}}x+\underbrace{c d-c y_p-x_p}_{=: \tilde{f}}\\
|
||||
0 &\stackrel{!}{=} \tilde{a}x^5 + \tilde{b}x^4 + \tilde{c}x^3 + \tilde{d}x^2 + \tilde{e}x + \tilde{f}
|
||||
\end{align}
|
||||
|
||||
And
|
||||
\begin{align}
|
||||
g(x) &\stackrel{!}{=}0\\
|
||||
\Leftrightarrow 0 &\stackrel{!}{=} 2 f(x) \cdot f'(x) - 2 y_p f'(x) + 2x - 2 x_p\\
|
||||
&= -2 x_p + 2x -2y_p(f(x))' + (f(x)^2)'\\
|
||||
&= \left ((x-x_p)^2 \right )' + \left ( (f(x) - y_p)^2 \right )'\\
|
||||
&= \left ((x-x_p)^2 + (f(x) - y_p)^2 \right )'\\
|
||||
&= (d_{P,f}(x)^2)'
|
||||
\end{align}
|
||||
\begin{enumerate}
|
||||
\item For any coefficient $\tilde{a} \in \mdr_{> 0}$ of $x^5$ we can choose $a$ such that we get $\tilde{a}$.
|
||||
\item For any coefficient $\tilde{b} \in \mdr \setminus \Set{0}$ of $x^4$ we can choose $b$ such that we get $\tilde{b}$.
|
||||
\item With $c$, we can get any value of $\tilde{c} \in \mdr$.
|
||||
\item With $d$, we can get any value of $\tilde{d} \in \mdr$.
|
||||
\item With $y_p$, we can get any value of $\tilde{e} \in \mdr$.
|
||||
\item With $x_p$, we can get any value of $\tilde{f} \in \mdr$.
|
||||
\end{enumerate}
|
||||
|
||||
So the problem of finding a closest point $(x, f(x))$ on a
|
||||
cubic function $f$ to $P$ is essentially the same as finding
|
||||
a root of a polynomial function of degree 5. As this cannot
|
||||
be solved algebraicly, the problem of finding such a point
|
||||
can also not be solved algebraicly.$\qed$
|
||||
The first restriction guaratees that we have a polynomial of
|
||||
degree 5. The second one is necessary, to get a high range of
|
||||
$\tilde{e}$.
|
||||
|
||||
This means, that there is no solution formula for the problem of
|
||||
finding the closest points on a cubic function to a given point,
|
||||
because if there was one, you could use this formula for finding
|
||||
roots of polynomials of degree 5. $\qed$
|
||||
\end{proof}
|
||||
|
||||
\todo[inline]{Start with theorem that this problem is not solvable
|
||||
with analytics only. Use a general 5th degree function and show
|
||||
that it can be mapped to a $f$ and $P$ instance.}
|
||||
|
||||
When you want to calculate points with minimal distance, you can
|
||||
take the same approach as in Equation \ref{eq:minimizingFirstDerivative}:
|
||||
|
||||
\begin{align}
|
||||
0 &\stackrel{!}{=} -2 x_p + 2x -2y_p(f(x))' + (f(x)^2)'\\
|
||||
&= 2 f(x) \cdot f'(x) - 2 y_p f'(x) + 2x - 2 x_p\\
|
||||
&= f(x) \cdot f'(x) - y_p f'(x) + x - x_p\\
|
||||
&= \underbrace{f'(x) \cdot \left (f(x) - y_p \right )}_{\text{Polynomial of degree 5}} + x - x_p
|
||||
\end{align}
|
||||
|
||||
General algebraic equations of degree 5 don't have a solution formula.\footnote{TODO: Quelle}
|
||||
Although here seems to be more structure, the resulting algebraic
|
||||
equation can be almost any polynomial of degree 5:\footnote{Thanks to Peter Košinár on \href{http://math.stackexchange.com/a/584814/6876}{math.stackexchange.com} for this one}
|
||||
|
||||
\begin{align}
|
||||
0 &\stackrel{!}{=} f'(x) \cdot \left (f(x) - y_p \right ) + (x - x_p)\\
|
||||
&= \underbrace{3 a^2}_{= \tilde{a}} x^5 + \underbrace{5ab}_{\tilde{b}}x^4 + \underbrace{2(2ac + b^2 )}_{=: \tilde{c}}x^3 &+& \underbrace{3(ad+bc-ay_p)}_{\tilde{d}} x^2 \\
|
||||
& &+& \underbrace{(2 b d+c^2+1-2 b y_p)}_{=: \tilde{e}}x+\underbrace{c d-c y_p-x_p}_{=: \tilde{f}}\\
|
||||
0 &\stackrel{!}{=} \tilde{a}x^5 + \tilde{b}x^4 + \tilde{c}x^3 + \tilde{d}x^2 + \tilde{e}x + \tilde{f}
|
||||
\end{align}
|
||||
|
||||
\begin{enumerate}
|
||||
\item With $a$, we can get any value of $\tilde{a} \in \mdr \setminus \Set{0}$.
|
||||
\item With $b$, we can get any value of $\tilde{b} \in \mdr \setminus \Set{0}$.
|
||||
\item With $c$, we can get any value of $\tilde{c} \in \mdr$.
|
||||
\item With $d$, we can get any value of $\tilde{d} \in \mdr$.
|
||||
\item With $y_p$, we can get any value of $\tilde{e} \in \mdr$.
|
||||
\item With $x_p$, we can get any value of $\tilde{f} \in \mdr$.
|
||||
\end{enumerate}
|
||||
|
||||
The first restriction only guaratees that we have a polynomial of
|
||||
degree 5. The second one is necessary, to get a high range of
|
||||
$\tilde{e}$.
|
||||
|
||||
This means, that there is no solution formula for the problem of
|
||||
finding the closest points on a cubic function to a given point.
|
||||
|
||||
\subsection{Another approach}
|
||||
Just like we moved the function $f$ and the point to get in a
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue