mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-19 11:38:05 +02:00
added example for analysis
This commit is contained in:
parent
e3293c7a25
commit
5a44ac6bfc
2 changed files with 127 additions and 0 deletions
31
tikz/stetigkeit-differenzierbarkeit/Makefile
Normal file
31
tikz/stetigkeit-differenzierbarkeit/Makefile
Normal file
|
@ -0,0 +1,31 @@
|
|||
SOURCE = stetigkeit-differenzierbarkeit
|
||||
DELAY = 80
|
||||
DENSITY = 300
|
||||
WIDTH = 1024
|
||||
|
||||
make:
|
||||
pdflatex $(SOURCE).tex -output-format=pdf
|
||||
make clean
|
||||
|
||||
clean:
|
||||
rm -rf $(TARGET) *.class *.html *.log *.aux
|
||||
|
||||
gif:
|
||||
pdfcrop $(SOURCE).pdf
|
||||
convert -verbose -delay $(DELAY) -loop 0 -density $(DENSITY) $(SOURCE)-crop.pdf $(SOURCE).gif
|
||||
make clean
|
||||
|
||||
png:
|
||||
make
|
||||
make svg
|
||||
inkscape $(SOURCE).svg -w $(WIDTH) --export-png=$(SOURCE).png
|
||||
|
||||
transparentGif:
|
||||
convert $(SOURCE).pdf -transparent white result.gif
|
||||
make clean
|
||||
|
||||
svg:
|
||||
#inkscape $(SOURCE).pdf --export-plain-svg=$(SOURCE).svg
|
||||
pdf2svg $(SOURCE).pdf $(SOURCE).svg
|
||||
# Necessary, as pdf2svg does not always create valid svgs:
|
||||
inkscape $(SOURCE).svg --export-plain-svg=$(SOURCE).svg
|
|
@ -0,0 +1,96 @@
|
|||
\documentclass{article}
|
||||
|
||||
\usepackage[utf8]{inputenc} % this is needed for umlauts
|
||||
\usepackage[ngerman]{babel} % this is needed for umlauts
|
||||
\usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
|
||||
|
||||
\usepackage[pdftex,active,tightpage]{preview}
|
||||
\setlength\PreviewBorder{2mm}
|
||||
\usepackage{tikz}
|
||||
\usetikzlibrary{shapes,snakes,calc}
|
||||
\usepackage{amsmath,amssymb}
|
||||
\begin{document}
|
||||
\begin{preview}
|
||||
|
||||
%\begin{align*}
|
||||
% f: \mathbb{R} \rightarrow \mathbb{R}\\
|
||||
% g: \mathbb{R} \rightarrow \mathbb{R}\\
|
||||
%\end{align*}
|
||||
|
||||
\begin{tikzpicture}[%
|
||||
auto,
|
||||
example/.style={
|
||||
rectangle,
|
||||
draw=blue,
|
||||
thick,
|
||||
fill=blue!20,
|
||||
text width=4.5em,
|
||||
align=center,
|
||||
rounded corners,
|
||||
minimum height=2em
|
||||
},
|
||||
algebraicName/.style={
|
||||
text width=7em,
|
||||
align=center,
|
||||
minimum height=2em
|
||||
},
|
||||
explanation/.style={
|
||||
text width=10em,
|
||||
align=left,
|
||||
minimum height=3em
|
||||
}
|
||||
]
|
||||
\draw[fill=yellow!20,yellow!20, rounded corners] (-1.85, 0.70) rectangle (13.4,-6.85);
|
||||
\draw[fill=lime!20,lime!20, rounded corners] (-1.75, 0.45) rectangle (7.3,-6.75);
|
||||
\draw[fill=purple!20,purple!20, rounded corners] (-1.65,-1.55) rectangle (7.2,-6.65);
|
||||
\draw (0, 0) node[algebraicName] (A) {gleichmäßig stetig}
|
||||
(3, 0) node[explanation] (B) {
|
||||
\begin{minipage}{0.90\textwidth}
|
||||
\tiny
|
||||
$\forall \varepsilon >0 \ \exists \delta=\delta(\varepsilon)>0\colon\\ |f(x)-f(z)| < \varepsilon\\ \forall x,z \in D \text{ mit } |x-z|<\delta$
|
||||
\end{minipage}
|
||||
}
|
||||
(6, 0) node[example, draw=lime, fill=lime!15] (X) {\tiny$f(x)=\sin(x)$}
|
||||
(6,-1) node[example, draw=lime, fill=lime!15] (X) {\tiny$g(x)=\cos(x)$}
|
||||
(0,-2) node[algebraicName, purple] (C) {Lipschitz-stetig}
|
||||
(3.5,-2) node[explanation] (X) {
|
||||
\begin{minipage}{90\textwidth}
|
||||
\tiny
|
||||
$f$ heißt auf $D$ \textbf{Lipschitz-stetig}\\
|
||||
$:\Leftrightarrow \exists L\ge 0: |f(x)-f(z)|\le L|x-z|\ \forall x,z \in D$
|
||||
\end{minipage}
|
||||
}
|
||||
%(2, -3) node[example, draw=purple, fill=purple!15] (D) {$(\mathbb{Z}, +)$}
|
||||
%(4, -3) node[example, draw=purple, fill=purple!15] (E) {$(\mathbb{Q} \setminus \{0\}, \cdot)$}
|
||||
%(6, -3) node[example, draw=purple, fill=purple!15] (X) {$\mathbb{Z}_1$}
|
||||
|
||||
%(10,-6) node[example, draw=black, fill=black!15] (F) {$(\mathbb{N}_0, +)$}
|
||||
(12,-6) node[example, draw=black, fill=black!15] (G) {$(\mathbb{N}_0, \cdot)$}
|
||||
|
||||
|
||||
(0,-6) node[example, draw=red, fill=red!15] (K) {\tiny$h(x) = |x|$}
|
||||
%(2,-6) node[example, draw=red, fill=red!15] (L) {$(\mathbb{R}, +, \cdot)$}
|
||||
%(4,-6) node[example, draw=red, fill=red!15] (M) {$(\mathbb{C}, +, \cdot)$}
|
||||
(6,-6) node[example, draw=red, fill=red!15] (N) {\tiny$f_1(x) = 42$}
|
||||
|
||||
|
||||
(9, 0) node[algebraicName] (O) {Stetige Funktionen}
|
||||
(12,0) node[explanation] (X) {
|
||||
\begin{minipage}{0.9\textwidth}
|
||||
\tiny
|
||||
$f$ heißt stetig in $x_0 :\Leftrightarrow$\\
|
||||
für jede Folge $(x_n)$ in $D$ mit $x_n \rightarrow x_0$ gilt:\\
|
||||
$f(x_n) \rightarrow f(x_0)$
|
||||
\end{minipage}
|
||||
}
|
||||
(12,-1) node[example, draw=yellow, fill=yellow!15] (P) {\tiny$f_2(x) = \frac{1}{x}$};
|
||||
|
||||
% LP-Stetig
|
||||
\draw[purple, thick, rounded corners] ($(C.north west)+(-0.3,0.1)$) rectangle ($(N.south east)+(0.3,-0.3)$);
|
||||
% gleichmäßig stetig
|
||||
\draw[lime, thick, rounded corners] ($(A.north west)+(-0.4,0.1)$) rectangle ($(N.south east)+(0.4,-0.4)$);
|
||||
% stetige funktionen
|
||||
\draw[yellow, thick, rounded corners] ($(A.north west)+(-0.5,0.2)$) rectangle ($(G.south east)+(0.5,-0.5)$);
|
||||
\end{tikzpicture}
|
||||
\end{preview}
|
||||
\end{document}
|
Loading…
Add table
Add a link
Reference in a new issue