mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-19 11:38:05 +02:00
CNN Intro
This commit is contained in:
parent
551102b9e7
commit
49b8552172
4 changed files with 108 additions and 6 deletions
BIN
presentations/CNN-Intro/CNN-Intro.pdf
Normal file
BIN
presentations/CNN-Intro/CNN-Intro.pdf
Normal file
Binary file not shown.
|
@ -4,6 +4,7 @@
|
||||||
\usepackage[utf8]{inputenc} % this is needed for german umlauts
|
\usepackage[utf8]{inputenc} % this is needed for german umlauts
|
||||||
\usepackage[english]{babel} % this is needed for german umlauts
|
\usepackage[english]{babel} % this is needed for german umlauts
|
||||||
\usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
|
\usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
|
||||||
|
\usepackage{caption}
|
||||||
\usepackage{tikz}
|
\usepackage{tikz}
|
||||||
\usetikzlibrary{arrows.meta}
|
\usetikzlibrary{arrows.meta}
|
||||||
\usetikzlibrary{decorations.pathreplacing}
|
\usetikzlibrary{decorations.pathreplacing}
|
||||||
|
@ -11,6 +12,7 @@
|
||||||
\usetikzlibrary{decorations.text}
|
\usetikzlibrary{decorations.text}
|
||||||
\usetikzlibrary{decorations.pathmorphing}
|
\usetikzlibrary{decorations.pathmorphing}
|
||||||
\usetikzlibrary{shapes.multipart, calc}
|
\usetikzlibrary{shapes.multipart, calc}
|
||||||
|
\usepackage{minted} % needed for the inclusion of source code
|
||||||
|
|
||||||
\begin{document}
|
\begin{document}
|
||||||
|
|
||||||
|
@ -107,13 +109,94 @@
|
||||||
|
|
||||||
\section{Applications}
|
\section{Applications}
|
||||||
\begin{frame}{Symbol recognizer}
|
\begin{frame}{Symbol recognizer}
|
||||||
\begin{center}
|
\begin{figure}[ht]
|
||||||
\href{http://write-math.com}{write-math.com}
|
\centering
|
||||||
\end{center}
|
\includegraphics[width=0.8\paperwidth, height=0.7\paperheight, keepaspectratio]{graphics/symbol-recognizer.png}
|
||||||
|
\captionsetup{labelformat=empty}
|
||||||
|
\caption{\href{http://write-math.com}{write-math.com}}
|
||||||
|
\end{figure}
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
\begin{frame}{Symbol recognizer}
|
\begin{frame}{}
|
||||||
GANs
|
\inputminted[linenos,
|
||||||
|
numbersep=7pt,
|
||||||
|
gobble=0,
|
||||||
|
% frame=none,
|
||||||
|
% framesep=2mm,
|
||||||
|
fontsize=\footnotesize, tabsize=4]{python}{cnn.py}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\begin{frame}{Super Resolution}
|
||||||
|
\begin{figure}[ht]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=0.8\paperwidth, height=0.7\paperheight, keepaspectratio]{graphics/pixel-recursive-super-resolution.png}
|
||||||
|
\captionsetup{labelformat=empty}
|
||||||
|
\caption{Dahl, Norouzi, Shlens: Pixel recursive super resolution (2017)}
|
||||||
|
\end{figure}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{frame}{Colorization: The Problem}
|
||||||
|
\begin{figure}[ht]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=0.8\paperwidth, height=0.7\paperheight, keepaspectratio]{graphics/multimodality-apple.png}
|
||||||
|
\captionsetup{labelformat=empty}
|
||||||
|
\caption{Cinarel: Automatic Colorization of Webtoons Using Deep Convolutional Neural Networks (2018)}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
Interactive Demo: \href{http://richzhang.github.io/colorization/}{richzhang.github.io/colorization}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{frame}{Colorization - Photographs}
|
||||||
|
\begin{figure}[ht]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=0.8\paperwidth, height=0.7\paperheight, keepaspectratio]{graphics/colorful-image-colorization.png}
|
||||||
|
\captionsetup{labelformat=empty}
|
||||||
|
\caption{Zhang, Isola, Efros: Colorful Image Colorization (2016)}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
Interactive Demo: \href{http://richzhang.github.io/colorization/}{richzhang.github.io/colorization}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{frame}{Colorization - Comic}
|
||||||
|
\begin{figure}[ht]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=0.8\paperwidth, height=0.7\paperheight, keepaspectratio]{graphics/comic-colorization.png}
|
||||||
|
\captionsetup{labelformat=empty}
|
||||||
|
\caption{Ci, Ma, Wang, Li, Luo: User-Guided Deep Anime Line Art Colorization with Conditional Adversarial Networks (2018)}
|
||||||
|
\end{figure}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\begin{frame}{Denoising}
|
||||||
|
\begin{figure}[ht]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=0.8\paperwidth, height=0.7\paperheight, keepaspectratio]{graphics/denoising.png}
|
||||||
|
\captionsetup{labelformat=empty}
|
||||||
|
\caption{Zhang, Zuo, Gu, Zhang: Learning Deep CNN Denoiser Prior for Image Restoration (2017)}
|
||||||
|
\end{figure}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{frame}{Image Inpainting (Watermark removal)}
|
||||||
|
\begin{figure}[ht]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=0.8\paperwidth, height=0.7\paperheight, keepaspectratio]{graphics/leopard-inpainting.png}
|
||||||
|
\captionsetup{labelformat=empty}
|
||||||
|
\caption{Yang, Lu, Lin, Shechtman, Wang, Li: High-Resolution Image Inpainting using Multi-Scale Neural Patch Synthesis (2017)}
|
||||||
|
\end{figure}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{frame}{CNNs in NLP}
|
||||||
|
\begin{figure}[ht]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=0.8\paperwidth, height=0.7\paperheight, keepaspectratio]{graphics/tdnns.png}
|
||||||
|
\captionsetup{labelformat=empty}
|
||||||
|
\caption{Collobert, Weston, Bottou, Karlen, Kavukcuoglu, Kuksa:
|
||||||
|
Natural Language Processing (almost) from Scratch (2011)}
|
||||||
|
\end{figure}
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
||||||
|
|
|
@ -1,7 +1,7 @@
|
||||||
SOURCE = CNN-Intro
|
SOURCE = CNN-Intro
|
||||||
|
|
||||||
make:
|
make:
|
||||||
pdflatex $(SOURCE).tex -output-format=pdf
|
pdflatex -shell-escape $(SOURCE).tex -output-format=pdf
|
||||||
make clean
|
make clean
|
||||||
|
|
||||||
clean:
|
clean:
|
||||||
|
|
19
presentations/CNN-Intro/cnn.py
Normal file
19
presentations/CNN-Intro/cnn.py
Normal file
|
@ -0,0 +1,19 @@
|
||||||
|
import data
|
||||||
|
|
||||||
|
from keras.layers import Dense, Flatten, Conv2D, MaxPooling2D
|
||||||
|
from keras.models import Sequential, load_model
|
||||||
|
|
||||||
|
model = Sequential()
|
||||||
|
model.add(Conv2D(16, (3, 3)))
|
||||||
|
model.add(MaxPooling2D(pool_size=(2, 2)))
|
||||||
|
model.add(Conv2D(16, (3, 3)))
|
||||||
|
model.add(Flatten())
|
||||||
|
model.add(Dense(128, activation='relu'))
|
||||||
|
model.add(Dense(data.n_classes, activation='softmax'))
|
||||||
|
|
||||||
|
model.compile(loss='categorical_crossentropy', optimizer='adam')
|
||||||
|
model.fit(data.x_train, data.y_train)
|
||||||
|
|
||||||
|
model.save('model.h5')
|
||||||
|
model = load_model('model.h5')
|
||||||
|
y_predicted = model.predict(data.x_test)
|
Loading…
Add table
Add a link
Reference in a new issue