mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-19 11:38:05 +02:00
restructured presentation
This commit is contained in:
parent
75bc9d0dae
commit
3a8564348e
9 changed files with 103 additions and 58 deletions
|
@ -26,13 +26,20 @@
|
|||
\section{What is my Bachelor's thesis about?}
|
||||
\input{introduction}
|
||||
|
||||
\section{What did I do so far?}
|
||||
\input{work-done}
|
||||
\section{write-math.com}
|
||||
\input{write-math}
|
||||
|
||||
\section{Preprocessing and Features}
|
||||
\input{preprocessing}
|
||||
\input{features}
|
||||
|
||||
\section{Neural Nets}
|
||||
\input{neural-nets}
|
||||
|
||||
\section{What will I do next?}
|
||||
\input{will-do}
|
||||
|
||||
\section{End}
|
||||
\section*{End}
|
||||
\subsection{End}
|
||||
\input{sources}
|
||||
\framedgraphic{Thanks for Your Attention!}{../images/xi.png}
|
||||
|
|
23
presentations/Bachelor-Short/LaTeX/features.tex
Normal file
23
presentations/Bachelor-Short/LaTeX/features.tex
Normal file
|
@ -0,0 +1,23 @@
|
|||
\subsection{Features}
|
||||
\begin{frame}{Features}
|
||||
\begin{itemize}
|
||||
\item Local
|
||||
\begin{itemize}
|
||||
\item Coordinates
|
||||
\item Speed
|
||||
\item Binary pen pressure
|
||||
\item Direction
|
||||
\item Curvature
|
||||
\item Bitmap-environment
|
||||
\item Hat-Feature
|
||||
\end{itemize}
|
||||
\item Global
|
||||
\begin{itemize}
|
||||
\item \# of points
|
||||
\item \# of strokes
|
||||
\item Center point
|
||||
\item Bitmap
|
||||
\item Bounding box (width, height, time)
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
\end{frame}
|
|
@ -2,9 +2,9 @@
|
|||
|
||||
\begin{frame}{What is my Bachelor's thesis about?}
|
||||
\begin{itemize}
|
||||
\item Recognition of handwritten mathematical formulas
|
||||
\item Recognition of handwritten mathematical symbols
|
||||
\item On-line recognition, not OCR!
|
||||
\item Given a series of points $(x(t), y(t), b)$\\
|
||||
\item Given a series of points $(x(t), y(t), b(t))$\\
|
||||
I want to get the proper \LaTeX{} code.
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
@ -16,13 +16,13 @@
|
|||
\item It's much harder to find complete formulas.
|
||||
\end{itemize}
|
||||
|
||||
I want to
|
||||
\begin{itemize}
|
||||
\item provide a tool that enables beginners to get the best \LaTeX{} code
|
||||
for their formula,
|
||||
\item find out what works best for symbol recognition
|
||||
\item and provide data and a platform to test new ideas for classifiers
|
||||
\end{itemize}
|
||||
% I want to
|
||||
% \begin{itemize}
|
||||
% \item provide a tool that enables beginners to get the best \LaTeX{} code
|
||||
% for their formula,
|
||||
% \item find out what works best for symbol recognition
|
||||
% \item and provide data and a platform to test new ideas for classifiers
|
||||
% \end{itemize}
|
||||
|
||||
As soon as symbol recognition works good in terms of classification time and
|
||||
performance, I will continue with formula recognition.
|
||||
|
|
13
presentations/Bachelor-Short/LaTeX/neural-nets.tex
Normal file
13
presentations/Bachelor-Short/LaTeX/neural-nets.tex
Normal file
|
@ -0,0 +1,13 @@
|
|||
\subsection{Neural Net experiments}
|
||||
\begin{frame}{Experiments}
|
||||
\textbf{Preprocessing:} Scaling, shifting and linear interpolation\\
|
||||
\textbf{Features:} Coordinates of 80 points (4 Lines with 20 points each)\\
|
||||
\textbf{Learning:} MLP, 300 epochs, LR of 0.1
|
||||
\begin{itemize}
|
||||
\item[] \textit{toplogy \tabto{6cm} error in training time}
|
||||
\item 160:500:369 \tabto{6cm} 30.62 \% in \hphantom{0}9min 08s
|
||||
\item 160:500:500:369 \tabto{6cm} 27.73 \% in 11min 49s
|
||||
\item 160:500:500:500:369 \tabto{6cm} 34.79 \% in 14min 09s
|
||||
\item 160:500:500:500:500:369 \tabto{6cm} 33.61 \% in 14min 06s
|
||||
\end{itemize}
|
||||
\end{frame}
|
18
presentations/Bachelor-Short/LaTeX/preprocessing.tex
Normal file
18
presentations/Bachelor-Short/LaTeX/preprocessing.tex
Normal file
|
@ -0,0 +1,18 @@
|
|||
\subsection{Preprocessing}
|
||||
\begin{frame}{Preprocessing}
|
||||
\begin{itemize}
|
||||
\item Normalizing
|
||||
\begin{itemize}
|
||||
\item Scaling
|
||||
\item Shifting
|
||||
\item Resampling
|
||||
\end{itemize}
|
||||
\item Noise reduction
|
||||
\begin{itemize}
|
||||
\item Smoothing (e.g. moving average)
|
||||
\item Dot reduction
|
||||
\item Filtering (by distance, speed or angle)
|
||||
\item Stroke connection
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
\end{frame}
|
|
@ -1,32 +1,22 @@
|
|||
\subsection{What will I do next?}
|
||||
\begin{frame}{What will I do next?}
|
||||
\begin{itemize}
|
||||
\item Get classification performance with cross-validation
|
||||
\item Implement neural net for classification
|
||||
\begin{itemize}
|
||||
\item preprocessing: compute cubic spline for each line
|
||||
\begin{itemize}
|
||||
\item equi-spaced points or
|
||||
\item get equi-timed points
|
||||
\end{itemize}
|
||||
\item 5 - 20 input neurons for each line
|
||||
\item 1076 output neurons (one for each symbol)
|
||||
\end{itemize}
|
||||
\item Get a language model (e.g. by parsing Wikipedia)
|
||||
\item Use ANN with HMM (?)
|
||||
\item Evaluate preprocessing steps
|
||||
\item Try other features
|
||||
\item Try other topologies / trainings (e.g. newbob)
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\subsection{Far future}
|
||||
\begin{frame}{What could be done?}
|
||||
\begin{itemize}
|
||||
\item Make use of audio data in a multimodal approach\\
|
||||
e.g. $R$ and $\mathcal{R}$
|
||||
\item Currently, the Lecture Translation system doesn't recognize math.\\
|
||||
You get \enquote{integral of e raised to the power of x d x} instead
|
||||
of $\int e^x \mathrm{d} x$.
|
||||
\item Spoken math is ambigous: $\sqrt{a+b}$ vs. $\sqrt{a} + b$
|
||||
\item The language model I create could help to find probable formulas
|
||||
\item The platform could be used to get more input data of users
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
% \subsection{Far future}
|
||||
% \begin{frame}{What could be done?}
|
||||
% \begin{itemize}
|
||||
% \item Make use of audio data in a multimodal approach\\
|
||||
% e.g. $R$ and $\mathcal{R}$
|
||||
% \item Currently, the Lecture Translation system doesn't recognize math.\\
|
||||
% You get \enquote{integral of e raised to the power of x d x} instead
|
||||
% of $\int e^x \mathrm{d} x$.
|
||||
% \item Spoken math is ambigous: $\sqrt{a+b}$ vs. $\sqrt{a} + b$
|
||||
% \item The language model I create could help to find probable formulas
|
||||
% \item The platform could be used to get more input data of users
|
||||
% \end{itemize}
|
||||
% \end{frame}
|
|
@ -13,25 +13,18 @@
|
|||
|
||||
\framedgraphic{Classify}{../images/classify.png}
|
||||
\framedgraphic{Workflow}{../images/workflow.png}
|
||||
\framedgraphic{User page}{../images/user-page.png}
|
||||
\framedgraphic{Information about handwritten-data}{../images/view.png}
|
||||
\framedgraphic{Non-mathematical symbols}{../images/yinyang.png}
|
||||
\framedgraphic{Training}{../images/train.png}
|
||||
% \framedgraphic{User page}{../images/user-page.png}
|
||||
% \framedgraphic{Information about recordings}{../images/view.png}
|
||||
% \framedgraphic{Symbol page}{../images/symbol.png}
|
||||
% \framedgraphic{Training}{../images/train.png}
|
||||
\framedgraphic{Ranking}{../images/ranking.png}
|
||||
\framedgraphic{Symbol page}{../images/symbol.png}
|
||||
|
||||
\begin{frame}{Statistics}
|
||||
|
||||
\begin{frame}[fragile]{Statistics}
|
||||
\begin{itemize}
|
||||
\item 40 users
|
||||
\item 1076 symbols
|
||||
\item 5519 handwritten symbols (e.g. 195 times the letter \enquote{A})
|
||||
\begin{itemize}
|
||||
\item only 264 have 4 lines
|
||||
\item only 36 have 5 lines
|
||||
\item only 16 have 6 lines
|
||||
\item only 19 have 7 lines or more
|
||||
\item none has more than 12 lines
|
||||
\end{itemize}
|
||||
\item 127 users with at least 5 recordings
|
||||
\item 1109 symbols, but only 369 used for experiments
|
||||
\item $\num{235831}$ recordings (e.g. $\num{3486}$ times \verb+\int+)
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
|
@ -40,12 +33,11 @@
|
|||
\item preprocessing: Scale to fit into unit square while keeping the aspect
|
||||
ratio
|
||||
\item applies dynamic time warping
|
||||
\item compares a new handwritten symbol with every handwritten symbol
|
||||
\item compares a new recording with every recording
|
||||
in the database
|
||||
\item[$\Rightarrow$] Classification time is in $\mathcal{O}(\text{handwritten symbols})$,
|
||||
\item[$\Rightarrow$] Classification time is in $\mathcal{O}(\text{recordings})$,
|
||||
but we rather would like $\mathcal{O}(\text{symbols})$
|
||||
\item the current server / workflow can only handle about 4000 handwritten
|
||||
symbols
|
||||
\item the current server / workflow can only handle about 4000 recordings
|
||||
\item[$\Rightarrow$] Another way to classify is necessary
|
||||
\end{itemize}
|
||||
\end{frame}
|
Binary file not shown.
Before Width: | Height: | Size: 36 KiB After Width: | Height: | Size: 38 KiB |
|
@ -4,9 +4,11 @@
|
|||
\InputIfFileExists{../templates/beamerthemekit.sty}{\usepackage{../templates/beamerthemekit}}{\usetheme{Frankfurt}}
|
||||
\usefonttheme{professionalfonts}
|
||||
|
||||
\usepackage{tabto}
|
||||
\usepackage{hyperref}
|
||||
\usepackage{lmodern}
|
||||
\usepackage{listings}
|
||||
\usepackage{siunitx}
|
||||
\usepackage{wrapfig} % see http://en.wikibooks.org/wiki/LaTeX/Floats,_Figures_and_Captions
|
||||
\usepackage[utf8]{inputenc} % this is needed for german umlauts
|
||||
\usepackage[english]{babel} % this is needed for german umlauts
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue