2
0
Fork 0
mirror of https://github.com/MartinThoma/LaTeX-examples.git synced 2025-04-26 06:48:04 +02:00

Add dyna-q algorithm

This commit is contained in:
Martin Thoma 2016-07-23 14:10:49 +02:00
parent 578245c784
commit 30c37862a8
4 changed files with 95 additions and 0 deletions

View file

@ -0,0 +1,56 @@
\documentclass{article}
\usepackage[pdftex,active,tightpage]{preview}
\setlength\PreviewBorder{2mm}
\usepackage[utf8]{inputenc} % this is needed for umlauts
\usepackage[ngerman]{babel} % this is needed for umlauts
\usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
\usepackage{amssymb,amsmath,amsfonts} % nice math rendering
\usepackage{braket} % needed for \Set
\usepackage{caption}
\usepackage{algorithm}
\usepackage{xcolor}
\usepackage[noend]{algpseudocode}
\usepackage{mathtools,bm}
\DeclareMathOperator*{\argmax}{arg\,max}
\DeclareCaptionFormat{myformat}{#3}
\captionsetup[algorithm]{format=myformat}
\begin{document}
\begin{preview}
\begin{algorithm}[H]
\begin{algorithmic}
\Require
\Statex Sates $\mathcal{X} = \{1, \dots, n_x\}$
\Statex Actions $\mathcal{A} = \{1, \dots, n_a\},\qquad A: \mathcal{X} \Rightarrow \mathcal{A}$
\Statex Reward function $R: \mathcal{X} \times \mathcal{A} \rightarrow \mathbb{R}$
\Statex Black-box (probabilistic) transition function $T: \mathcal{X} \times \mathcal{A} \rightarrow \mathcal{X}$
\Statex Learning rate $\alpha \in [0, 1]$, typically $\alpha = 0.1$
\Statex Discounting factor $\gamma \in [0, 1]$
\Statex $\lambda \in [0, 1]$: Trade-off between TD and MC
\Procedure{QLearning}{$\mathcal{X}$, $A$, $R$, $T$, $\alpha$, $\gamma$, $\lambda$}
\State Initialize $Q: \mathcal{X} \times \mathcal{A} \rightarrow \mathbb{R}$ arbitrarily
\State Initialize $M: \mathcal{X} \times \mathcal{A} \rightarrow \mathcal{X} \times \mathbb{R}$ arbitrarily \Comment{Model}
\While{$Q$ is not converged}
\State Select $s \in \mathcal{X}$ arbitrarily
\State $a \gets \pi(s)$
\State $r \gets R(s, a)$
\State $s' \gets T(s, a)$ \Comment{Receive the new state}
\State $Q(s, a) \gets (1 - \alpha) \cdot Q(s, a) + \alpha \cdot (r + \gamma \cdot \max_{a'} Q(s, a'))$
\State $M(s, a) \gets (s', r)$
\For{$i$ in range $1, \dots, N$}
\State Select $(\tilde{s}, \tilde{a}) \in \mathcal{X} \times \mathcal{A}$ arbitrarily
\State $(s', r) \gets M(\tilde{x}, \tilde{a})$
\State $Q(\tilde{s}, \tilde{a}) \gets (1 - \alpha) \cdot Q(\tilde{s}, \tilde{a}) + \alpha \cdot (r + \gamma \cdot \max_{a'} Q(s', a'))$
\EndFor
\State Calculate $\pi$ based on $Q$ (e.g. $\varepsilon$-greedy)
\EndWhile
\Return $Q$
\EndProcedure
\end{algorithmic}
\caption{Dyna-Q: Learn function $Q: \mathcal{X} \times \mathcal{A} \rightarrow \mathbb{R}$}
\label{alg:dyna-q}
\end{algorithm}
\end{preview}
\end{document}