diff --git a/cheat-sheets/analysis/Analysis_Wichtige_Formeln.tex b/cheat-sheets/analysis/Analysis_Wichtige_Formeln.tex index e43440f..632bc38 100644 --- a/cheat-sheets/analysis/Analysis_Wichtige_Formeln.tex +++ b/cheat-sheets/analysis/Analysis_Wichtige_Formeln.tex @@ -1,6 +1,7 @@ \documentclass[a4paper,10pt]{article} -\usepackage{amssymb} -\usepackage{amsmath} +\usepackage{amssymb, amsmath} +\DeclareMathOperator{\arcsinh}{arcsinh} +\DeclareMathOperator{\arccosh}{arccosh} \DeclareMathOperator{\arctanh}{arctanh} \usepackage[utf8]{inputenc} % this is needed for umlauts \usepackage[ngerman]{babel} % this is needed for umlauts @@ -30,12 +31,12 @@ \begin{minipage}[b]{0.5\linewidth}\centering \begin{align*} -\lim_{x \to 0} \frac {\sin x}{x} &= 1 \\ -\lim_{x \to 0} \frac {e^x - 1}{x} &= 1 \\ -\lim_{h \to 0} \frac {e^{{x_0} + h} - e^{x_0}}{h} &= e^{x_0} \\ -\sum_{n = 0}^{\infty} (-1)^n \frac {(-1)^{n + 1}}{n} &= \log 2 \\ -\cos x &= \sum_{n = 0}^{\infty} (-1)^n \frac {x^{2n}}{(2n)!} \\ -\sin x &= \sum_{n = 0}^{\infty} (-1)^n \frac {x^{2n + 1}}{(2n + 1)!} + \lim_{x \to 0} \frac {\sin x}{x} &= 1 \\ + \lim_{x \to 0} \frac {e^x - 1}{x} &= 1 \\ + \lim_{h \to 0} \frac {e^{{x_0} + h} - e^{x_0}}{h} &= e^{x_0} \\ + \sum_{n = 0}^{\infty} (-1)^n \frac {(-1)^{n + 1}}{n} &= \log 2 \\ + \cos x &= \sum_{n = 0}^{\infty} (-1)^n \frac {x^{2n}}{(2n)!} \\ + \sin x &= \sum_{n = 0}^{\infty} (-1)^n \frac {x^{2n + 1}}{(2n + 1)!} \end{align*} \end{minipage} @@ -55,30 +56,47 @@ e^x &= \sum_{n = 0}^{\infty} \frac {x^n}{n!} \\ \end{minipage} \end{table} - - \section{Zusammenhänge} \begin{align*} - (\cos x)^2 + (\sin x)^2 &= 1 \\ - (\cosh x)^2 - (\sinh x)^2 &= 1 \\ - \tan x &= \frac {\sin x}{\cos x} \\ - \tanh x &= \frac {\sinh x}{\cosh x} \\ + (\cos x)^2 + (\sin x)^2 &= 1 \\ + (\cosh x)^2 - (\sinh x)^2 &= 1 \\ + \tan x &= \frac {\sin x}{\cos x} \\ + \tanh x &= \frac {\sinh x}{\cosh x} \\ (x + y)^n &= \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k \end{align*} \section{Ableitungen} +\begin{table}[ht] +\begin{minipage}[b]{0.5\linewidth}\centering \begin{align*} - (\arctan x)' &= \frac {1}{1 + x^2} \\ - (\sin x)' &= \cos x \\ - (\cos x)' &= -\sin x \\ - (\arctanh x)' &= \frac {1}{1 - x^2} + (\sin x)' &= \cos x \\ + (\cos x)' &= -\sin x \\ + (\tan x)' &= \frac{1}{\cos^2 x} \\ + (\sinh x)' &= \cosh x \\ + (\cosh x)' &= \sinh x \\ \end{align*} +\end{minipage} +\hspace{0.5cm} +\begin{minipage}[b]{0.5\linewidth} +\centering + +\begin{align*} + (\arcsin x)' &= \frac {1}{\sqrt{1-x^2}} \\ + (\arccos x)' &= - \frac {1}{\sqrt{1-x^2}} \\ + (\arctan x)' &= \frac {1}{1 + x^2} \\ + % (\arcsinh x)' &= \frac {1}{\sqrt{1+x^2}} \\ + % (\arccosh x)' &= \frac {1}{\sqrt{(1-x^2) \cdot (1+x^2)}} \\ + % (\arctanh x)' &= \frac {1}{1 - x^2} +\end{align*} + +\end{minipage} +\end{table} \section{Potenzreihen} Zuerst den Potenzradius r berechnen: \( - r = \frac {1}{\lim \text{sup} \sqrt[n]{|a_n|}} + r = \frac {1}{\lim \text{sup} \sqrt[n]{|a_n|}} \) \end{document}