mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-26 06:48:04 +02:00
more pseudocode
This commit is contained in:
parent
2274a07a62
commit
241e9ec502
4 changed files with 172 additions and 0 deletions
|
@ -0,0 +1,38 @@
|
|||
\documentclass{article}
|
||||
\usepackage[pdftex,active,tightpage]{preview}
|
||||
\setlength\PreviewBorder{2mm}
|
||||
|
||||
\usepackage[utf8]{inputenc} % this is needed for umlauts
|
||||
\usepackage[ngerman]{babel} % this is needed for umlauts
|
||||
\usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
|
||||
\usepackage{amssymb,amsmath,amsfonts} % nice math rendering
|
||||
\usepackage{braket} % needed for \Set
|
||||
\usepackage{algorithm,algpseudocode}
|
||||
|
||||
\begin{document}
|
||||
\begin{preview}
|
||||
Sei $n \in \mathbb{N}_{\geq 1}$, $A \in \mathbb{R}^{n \times n}$ und
|
||||
positiv definit sowie symmetrisch.
|
||||
|
||||
Dann existiert eine Zerlegung $A = L \cdot L^T$, wobei $L$ eine
|
||||
untere Dreiecksmatrix ist. Diese wird von folgendem Algorithmus
|
||||
berechnet:
|
||||
|
||||
\begin{algorithm}[H]
|
||||
\begin{algorithmic}
|
||||
\Function{Cholesky}{$A \in \mathbb{R}^{n \times n}$}
|
||||
\State $L = \Set{0} \in \mathbb{R}^{n \times n}$ \Comment{Initialisiere $L$}
|
||||
\For{($k=1$; $\;k \leq n$; $\;k$++)}
|
||||
\State $L_{k,k} = \sqrt{A_{k,k} - \sum_{i=1}^{k-1} L_{k,i}^2}$
|
||||
\For{($i=k+1$; $\;i \leq n$; $\;i$++)}
|
||||
\State $L_{i,k} = \frac{A_{i,k} - \sum_{j=1}^{k-1} L_{i,j} \cdot L_{k,j}}{L_{k,k}}$
|
||||
\EndFor
|
||||
\EndFor
|
||||
\State \Return $L$
|
||||
\EndFunction
|
||||
\end{algorithmic}
|
||||
\caption{Cholesky-Zerlegung}
|
||||
\label{alg:seq1}
|
||||
\end{algorithm}
|
||||
\end{preview}
|
||||
\end{document}
|
Loading…
Add table
Add a link
Reference in a new issue