mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-26 06:48:04 +02:00
db -> differenzierbar
This commit is contained in:
parent
ecd47d9509
commit
218ac0351d
2 changed files with 1 additions and 1 deletions
Binary file not shown.
|
@ -41,7 +41,7 @@ und $\gamma(t) = (R\cos t,R\sin t)$, für $t\in[0,2\pi]$, dann gilt:
|
|||
|
||||
\begin{beweis}
|
||||
Wir beweisen nur (1). ((2) beweist man analog und (3) folgt aus (1) und (2))\\
|
||||
O.B.d.A: $(x_0,y_0) = (0,0)$ und $R$ stetig db. Also $\gamma = (\gamma_1,\gamma_2)$, $\gamma (t) = (\underbrace{R(t)\cos t}_{= \gamma_1(t)},\underbrace{R(t)\sin t)}_{=\gamma_2(t)}$. $R$ stetig differenzierbar. $A:= \int_B u_x(x,y)d(x,y)$\\
|
||||
O.B.d.A: $(x_0,y_0) = (0,0)$ und $R$ stetig differenzierbar. Also $\gamma = (\gamma_1,\gamma_2)$, $\gamma (t) = (\underbrace{R(t)\cos t}_{= \gamma_1(t)},\underbrace{R(t)\sin t)}_{=\gamma_2(t)}$. $R$ stetig differenzierbar. $A:= \int_B u_x(x,y)d(x,y)$\\
|
||||
Zu zeigen: $A=\int_0^{2\pi} u(\gamma (t))\cdot \gamma_2'(t) dt$.\\
|
||||
Mit Polarkoordinaten, Transformations-Satz und Fubini:
|
||||
\begin{displaymath}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue