mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-26 06:48:04 +02:00
added some ideas; heavy restructuring
This commit is contained in:
parent
d4ace49b71
commit
1f7971f5ab
9 changed files with 592 additions and 583 deletions
|
@ -0,0 +1,21 @@
|
|||
\chapter{Description of the Problem}
|
||||
Let $f: D \rightarrow \mdr$ with $D \subseteq \mdr$ be a polynomial function and $P \in \mdr^2$
|
||||
be a point. Let $d_{P,f}: \mdr \rightarrow \mdr_0^+$
|
||||
be the Euklidean distance of a point $P$ and a point $\left (x, f(x) \right )$
|
||||
on the graph of $f$:
|
||||
\[d_{P,f} (x) := \sqrt{(x_P - x)^2 + (y_P - f(x))^2}\]
|
||||
|
||||
Now there is finite set $M = \Set{x_1, \dots, x_n} \subseteq D$ of minima for given $f$ and $P$:
|
||||
\[M = \Set{x \in D | d_{P,f}(x) = \min_{\overline{x} \in D} d_{P,f}(\overline{x})}\]
|
||||
|
||||
But minimizing $d_{P,f}$ is the same as minimizing $d_{P,f}^2$:
|
||||
\begin{align}
|
||||
d_{P,f}(x)^2 &= \sqrt{(x_P - x)^2 + (y_P - f(x))^2}^2\\
|
||||
&= x_p^2 - 2x_p x + x^2 + y_p^2 - 2y_p f(x) + f(x)^2
|
||||
\end{align}
|
||||
|
||||
\begin{theorem}[Fermat's theorem about stationary points]\label{thm:required-extremum-property}
|
||||
Let $x_0$ be a local extremum of a differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$.
|
||||
|
||||
Then: $f'(x_0) = 0$.
|
||||
\end{theorem}
|
Loading…
Add table
Add a link
Reference in a new issue