mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-26 06:48:04 +02:00
added some ideas; heavy restructuring
This commit is contained in:
parent
d4ace49b71
commit
1f7971f5ab
9 changed files with 592 additions and 583 deletions
|
@ -0,0 +1,58 @@
|
|||
\chapter{Linear function}
|
||||
\section{Defined on $\mdr$}
|
||||
Let $f(x) = m \cdot x + t$ with $m \in \mdr \setminus \Set{0}$ and
|
||||
$t \in \mdr$ be a linear function.
|
||||
|
||||
\begin{figure}[htp]
|
||||
\centering
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[
|
||||
legend pos=north east,
|
||||
axis x line=middle,
|
||||
axis y line=middle,
|
||||
grid = major,
|
||||
width=0.8\linewidth,
|
||||
height=8cm,
|
||||
grid style={dashed, gray!30},
|
||||
xmin= 0, % start the diagram at this x-coordinate
|
||||
xmax= 5, % end the diagram at this x-coordinate
|
||||
ymin= 0, % start the diagram at this y-coordinate
|
||||
ymax= 3, % end the diagram at this y-coordinate
|
||||
axis background/.style={fill=white},
|
||||
xlabel=$x$,
|
||||
ylabel=$y$,
|
||||
tick align=outside,
|
||||
minor tick num=-3,
|
||||
enlargelimits=true,
|
||||
tension=0.08]
|
||||
\addplot[domain=-5:5, thick,samples=50, red] {0.5*x};
|
||||
\addplot[domain=-5:5, thick,samples=50, blue] {-2*x+6};
|
||||
\addplot[black, mark = *, nodes near coords=$P$,every node near coord/.style={anchor=225}] coordinates {(2, 2)};
|
||||
\addlegendentry{$f(x)=\frac{1}{2}x$}
|
||||
\addlegendentry{$g(x)=-2x+6$}
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\caption{The shortest distance of $P$ to $f$ can be calculated by using the perpendicular}
|
||||
\label{fig:linear-min-distance}
|
||||
\end{figure}
|
||||
|
||||
Now you can drop a perpendicular $f_\bot$ through $P$ on $f(x)$. The
|
||||
slope of $f_\bot$ is $- \frac{1}{m}$ and $t_\bot$ can be calculated:\nobreak
|
||||
\begin{align}
|
||||
f_\bot(x) &= - \frac{1}{m} \cdot x + t_\bot\\
|
||||
\Rightarrow y_P &= - \frac{1}{m} \cdot x_P + t_\bot\\
|
||||
\Leftrightarrow t_\bot &= y_P + \frac{1}{m} \cdot x_P
|
||||
\end{align}
|
||||
|
||||
The point $(x, f(x))$ where the perpendicular $f_\bot$ crosses $f$
|
||||
is calculated this way:
|
||||
\begin{align}
|
||||
f(x) &= f_\bot(x)\\
|
||||
\Leftrightarrow m \cdot x + t &= - \frac{1}{m} \cdot x + \left(y_P + \frac{1}{m} \cdot x_P \right)\\
|
||||
\Leftrightarrow \left (m + \frac{1}{m} \right ) \cdot x &= y_P + \frac{1}{m} \cdot x_P - t\\
|
||||
\Leftrightarrow x &= \frac{m}{m^2+1} \left ( y_P + \frac{1}{m} \cdot x_P - t \right )
|
||||
\end{align}
|
||||
|
||||
There is only one point with minimal distance. See Figure~\ref{fig:linear-min-distance}.
|
||||
|
||||
\section{Defined on a closed interval of $\mdr$}
|
Loading…
Add table
Add a link
Reference in a new issue