mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-26 06:48:04 +02:00
aufgabe hinzugefügt
This commit is contained in:
parent
76192d0ecd
commit
1f17e10c5c
20 changed files with 382 additions and 760 deletions
Binary file not shown.
|
@ -12,7 +12,7 @@
|
|||
\frame{\titlepage}
|
||||
|
||||
\frame{
|
||||
\frametitle{Contents}
|
||||
\frametitle{Inhalte}
|
||||
\setcounter{tocdepth}{1}
|
||||
\tableofcontents
|
||||
\setcounter{tocdepth}{2}
|
||||
|
@ -28,6 +28,9 @@
|
|||
\section{Spezielle Graphen}
|
||||
\input{Spezielle-Graphen}
|
||||
|
||||
\section{Strukturen in Graphen}
|
||||
\input{Strukturen}
|
||||
|
||||
\section{Königsberger Brückenproblem}
|
||||
\input{Koenigsberger-Brueckenproblem}
|
||||
|
||||
|
|
|
@ -34,6 +34,27 @@ Kantenmenge bezeichnet.
|
|||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Aufgabe 1}
|
||||
Zeichnen Sie alle Graphen mit genau vier Ecken.
|
||||
|
||||
\only<2>{
|
||||
\begin{gallery}
|
||||
\galleryimage{aufgabe-1/graph-8} % vier einzelne Punkte
|
||||
\galleryimage{aufgabe-1/graph-7} % nur eine Kante
|
||||
\galleryimage{aufgabe-1/graph-6} % zwei Kanten
|
||||
\galleryimage{aufgabe-1/graph-11} % zwei Kanten -------------
|
||||
\galleryimage{aufgabe-1/graph-12} % drei Kanten: umgedrehtes u
|
||||
\galleryimage{aufgabe-1/graph-5} % drei Kanten
|
||||
\galleryimage[red]{aufgabe-1/graph-4} % drei Kanten:
|
||||
\galleryimage{aufgabe-1/graph-10} % vier Kanten: Viereck
|
||||
\galleryimage[red]{aufgabe-1/graph-2}
|
||||
\galleryimage{aufgabe-1/graph-3} % vier Kanten: Dreieck mit Spitze
|
||||
\galleryimage{aufgabe-1/graph-9} % fünf Kanten: nur Diagonale fehlt
|
||||
\galleryimage{aufgabe-1/graph-1} % sechs Kanten: K_4
|
||||
\end{gallery}
|
||||
}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Inzidenz}
|
||||
\begin{block}{Inzidenz}
|
||||
Sei $e \in E$ und $k = \Set{e_1, e_2} \in K$.
|
||||
|
|
|
@ -80,6 +80,13 @@ $\Rightarrow$ Wenn $G$ eine Ecke mit ungeraden Grad hat, ist $G$ nicht eulersch.
|
|||
\end{gallery}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Beweis: Satz von Euler}
|
||||
\textbf{Beh.:} $G$ ist eulersch $\Rightarrow \forall e \in E: $ Grad($e$) $\equiv 0 \mod 2$ \pause \\
|
||||
\textbf{Bew.:} Eulerkreis geht durch jede Ecke $e \in E$\pause, \\
|
||||
also geht der Eulerkreis (eventuell mehrfach) in $e$ hinein und hinaus \pause \\
|
||||
$\Rightarrow$ Grad($e$) $\equiv 0 \mod 2$
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Umkehrung des Satzes von Euler}
|
||||
\begin{block}{Umkehrung des Satzes von Euler}
|
||||
Wenn in einem zusammenhängenden Graphen $G$ jede Ecke geraden Grad hat, dann
|
||||
|
|
|
@ -75,152 +75,3 @@ bezeichnet man mit $K_{|A|, |B|}$.
|
|||
\galleryimage[Green]{vollstaendig-bipartit/k-5-5}
|
||||
\end{gallery}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Kantenzug}
|
||||
\begin{block}{Kantenzug}
|
||||
Sei $G = (E, K)$ ein Graph.
|
||||
|
||||
Dann heißt eine Folge $k_1, k_2, \dots, k_s$ von Kanten, zu denen es Ecken
|
||||
$e_0, e_1, e_2, \dots, e_s$ gibt, so dass
|
||||
\begin{itemize}
|
||||
\item $k_1 = \Set{e_0, e_1}$
|
||||
\item $k_2 = \Set{e_1, e_2}$
|
||||
\item \dots
|
||||
\item $k_s = \Set{e_{s-1}, e_s}$
|
||||
\end{itemize}
|
||||
gilt ein \textbf{Kantenzug}, der \textcolor{purple}{$e_0$} und \textcolor{blue}{$e_s$} \textbf{verbindet} und $s$
|
||||
seine \textbf{Länge}.
|
||||
\end{block}
|
||||
|
||||
\adjustbox{max size={\textwidth}{0.2\textheight}}{
|
||||
\begin{tikzpicture}
|
||||
\node (a)[vertex] at (1,1) {};
|
||||
\node (b)[vertex] at (2,5) {};
|
||||
\node (c)[vertex] at (3,3) {};
|
||||
\node (d)[vertex] at (5,4) {};
|
||||
\node (e)[vertex] at (3,6) {};
|
||||
\node (f)[vertex] at (5,6) {};
|
||||
\node (g)[vertex] at (7,6) {};
|
||||
\node (h)[vertex] at (7,4) {};
|
||||
\node (i)[vertex] at (6,2) {};
|
||||
\node (j)[vertex] at (8,7) {};
|
||||
\node (k)[vertex] at (9,5) {};
|
||||
\node (l)[vertex] at (13,6) {};
|
||||
\node (m)[vertex] at (11,7) {};
|
||||
\node (n)[vertex] at (15,7) {};
|
||||
\node (o)[vertex] at (16,4) {};
|
||||
\node (p)[vertex] at (10,2) {};
|
||||
\node (q)[vertex] at (13,1) {};
|
||||
\node (r)[vertex] at (16,1) {};
|
||||
\node (s)[vertex] at (17,4) {};
|
||||
\node (t)[vertex] at (19,6) {};
|
||||
\node (u)[vertex] at (18,3) {};
|
||||
\node (v)[vertex] at (20,2) {};
|
||||
\node (w)[vertex] at (15,4) {};
|
||||
|
||||
\foreach \from/\to in {a/c,c/b,c/d,d/f,f/g,g/h,h/d,d/g,h/f,i/k,k/j,k/l,l/m,m/n,n/o,o/t,t/v,v/u,s/r,o/q,q/p,u/t}
|
||||
\draw[line width=2pt] (\from) -- (\to);
|
||||
|
||||
\node (i)[vertex,purple] at (6,2) {};
|
||||
\node (v)[vertex,blue] at (20,2) {};
|
||||
\draw[line width=4pt, red] (i) -- (k) -- (l) -- (m) -- (n) -- (o) -- (t) -- (v);
|
||||
\end{tikzpicture}
|
||||
}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Geschlossener Kantenzug}
|
||||
\begin{block}{Geschlossener Kantenzug}
|
||||
Sei $G = (E, K)$ ein Graph und $A = (e_0, e_1, \dots, e_s)$ ein Kantenzug.
|
||||
|
||||
A heißt \textbf{geschlossen} $:\Leftrightarrow e_s = e_0$ .
|
||||
\end{block}
|
||||
|
||||
\begin{gallery}
|
||||
\galleryimage{walks/walk-1}
|
||||
\galleryimage{walks/walk-2}
|
||||
\galleryimage{walks/k-3-3-walk}
|
||||
\galleryimage{walks/k-5-walk}\\
|
||||
\galleryimage{walks/k-16-walk}
|
||||
\galleryimage{walks/star-graph-walk}
|
||||
\galleryimage{walks/tree-walk}
|
||||
\galleryimage{walks/walk-6}
|
||||
\end{gallery}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Weg}
|
||||
\begin{block}{Weg}
|
||||
Sei $G = (E, K)$ ein Graph und $A = (k_1, k_2 \dots, k_s)$ ein Kantenzug.
|
||||
|
||||
A heißt \textbf{Weg} $:\Leftrightarrow \forall_{i, j \in 1, \dots, s}: i \neq j \Rightarrow k_i \neq k_j$ .
|
||||
\end{block}
|
||||
|
||||
\pause
|
||||
|
||||
\begin{exampleblock}{Salopp}
|
||||
Ein Kantenzug, bei dem man keine Kante mehrfach abläuft, ist ein Weg.
|
||||
\end{exampleblock}
|
||||
|
||||
\pause
|
||||
|
||||
Achtung: Knoten dürfen mehrfach abgelaufen werden!
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Kreis}
|
||||
\begin{block}{Kreis}
|
||||
Sei $G = (E, K)$ ein Graph und $A = (k_1, k_2 \dots, k_s)$ ein Kantenzug.
|
||||
|
||||
A heißt \textbf{Kreis} $:\Leftrightarrow A$ ist geschlossen und ein Weg.
|
||||
\end{block}
|
||||
|
||||
\pause
|
||||
|
||||
Manchmal wird das auch "`einfacher Kreis"' genannt.
|
||||
|
||||
\pause
|
||||
|
||||
\begin{gallery}
|
||||
\galleryimage[Green]{graphs/circle-one-facet}
|
||||
\galleryimage[Green]{graphs/circle-two-facets}
|
||||
\end{gallery}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Zusammenhängender Graph}
|
||||
\begin{block}{Zusammenhängender Graph}
|
||||
Sei $G = (E, K)$ ein Graph.
|
||||
|
||||
$G$ heißt \textbf{zusammenhängend} $:\Leftrightarrow \forall e_1, e_2 \in E: $ Es ex. ein Kantenzug, der $e_1$ und $e_2$ verbindet
|
||||
\end{block}
|
||||
|
||||
\begin{gallery}
|
||||
\galleryimage[red]{graphs/graph-1}
|
||||
\galleryimage[red]{graphs/graph-2}
|
||||
\galleryimage[Green]{graphs/k-3-3}
|
||||
\galleryimage[Green]{graphs/k-5}\\
|
||||
\galleryimage[Green]{graphs/k-16}
|
||||
\galleryimage[Green]{graphs/graph-6}
|
||||
\galleryimage[Green]{graphs/star-graph}
|
||||
\galleryimage[Green]{graphs/tree}
|
||||
\end{gallery}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Grad einer Ecke}
|
||||
\begin{block}{Grad einer Ecke}
|
||||
Der \textbf{Grad} einer Ecke ist die Anzahl der Kanten, die von dieser Ecke
|
||||
ausgehen.
|
||||
\end{block}
|
||||
|
||||
\begin{block}{Isolierte Ecken}
|
||||
Hat eine Ecke den Grad 0, so nennt man ihn \textbf{isoliert}.
|
||||
\end{block}
|
||||
|
||||
\begin{gallery}
|
||||
\galleryimage{graphs/graph-1}
|
||||
\galleryimage{graphs/graph-2}
|
||||
\galleryimage{graphs/k-3-3}
|
||||
\galleryimage{graphs/k-5}\\
|
||||
\galleryimage{graphs/k-16}
|
||||
\galleryimage{graphs/graph-6}
|
||||
\galleryimage{graphs/star-graph}
|
||||
\galleryimage{graphs/tree}
|
||||
\end{gallery}
|
||||
\end{frame}
|
||||
|
|
149
presentations/Diskrete-Mathematik/LaTeX/Strukturen.tex
Normal file
149
presentations/Diskrete-Mathematik/LaTeX/Strukturen.tex
Normal file
|
@ -0,0 +1,149 @@
|
|||
\subsection{Strukturen in Graphen}
|
||||
\begin{frame}{Kantenzug}
|
||||
\begin{block}{Kantenzug}
|
||||
Sei $G = (E, K)$ ein Graph.
|
||||
|
||||
Dann heißt eine Folge $k_1, k_2, \dots, k_s$ von Kanten, zu denen es Ecken
|
||||
$e_0, e_1, e_2, \dots, e_s$ gibt, so dass
|
||||
\begin{itemize}
|
||||
\item $k_1 = \Set{e_0, e_1}$
|
||||
\item $k_2 = \Set{e_1, e_2}$
|
||||
\item \dots
|
||||
\item $k_s = \Set{e_{s-1}, e_s}$
|
||||
\end{itemize}
|
||||
gilt ein \textbf{Kantenzug}, der \textcolor{purple}{$e_0$} und \textcolor{blue}{$e_s$} \textbf{verbindet} und $s$
|
||||
seine \textbf{Länge}.
|
||||
\end{block}
|
||||
|
||||
\adjustbox{max size={\textwidth}{0.2\textheight}}{
|
||||
\begin{tikzpicture}
|
||||
\node (a)[vertex] at (1,1) {};
|
||||
\node (b)[vertex] at (2,5) {};
|
||||
\node (c)[vertex] at (3,3) {};
|
||||
\node (d)[vertex] at (5,4) {};
|
||||
\node (e)[vertex] at (3,6) {};
|
||||
\node (f)[vertex] at (5,6) {};
|
||||
\node (g)[vertex] at (7,6) {};
|
||||
\node (h)[vertex] at (7,4) {};
|
||||
\node (i)[vertex] at (6,2) {};
|
||||
\node (j)[vertex] at (8,7) {};
|
||||
\node (k)[vertex] at (9,5) {};
|
||||
\node (l)[vertex] at (13,6) {};
|
||||
\node (m)[vertex] at (11,7) {};
|
||||
\node (n)[vertex] at (15,7) {};
|
||||
\node (o)[vertex] at (16,4) {};
|
||||
\node (p)[vertex] at (10,2) {};
|
||||
\node (q)[vertex] at (13,1) {};
|
||||
\node (r)[vertex] at (16,1) {};
|
||||
\node (s)[vertex] at (17,4) {};
|
||||
\node (t)[vertex] at (19,6) {};
|
||||
\node (u)[vertex] at (18,3) {};
|
||||
\node (v)[vertex] at (20,2) {};
|
||||
\node (w)[vertex] at (15,4) {};
|
||||
|
||||
\foreach \from/\to in {a/c,c/b,c/d,d/f,f/g,g/h,h/d,d/g,h/f,i/k,k/j,k/l,l/m,m/n,n/o,o/t,t/v,v/u,s/r,o/q,q/p,u/t}
|
||||
\draw[line width=2pt] (\from) -- (\to);
|
||||
|
||||
\node (i)[vertex,purple] at (6,2) {};
|
||||
\node (v)[vertex,blue] at (20,2) {};
|
||||
\draw[line width=4pt, red] (i) -- (k) -- (l) -- (m) -- (n) -- (o) -- (t) -- (v);
|
||||
\end{tikzpicture}
|
||||
}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Geschlossener Kantenzug}
|
||||
\begin{block}{Geschlossener Kantenzug}
|
||||
Sei $G = (E, K)$ ein Graph und $A = (e_0, e_1, \dots, e_s)$ ein Kantenzug.
|
||||
|
||||
A heißt \textbf{geschlossen} $:\Leftrightarrow e_s = e_0$ .
|
||||
\end{block}
|
||||
|
||||
\begin{gallery}
|
||||
\galleryimage{walks/walk-1}
|
||||
\galleryimage{walks/walk-2}
|
||||
\galleryimage{walks/k-3-3-walk}
|
||||
\galleryimage{walks/k-5-walk}\\
|
||||
\galleryimage{walks/k-16-walk}
|
||||
\galleryimage{walks/star-graph-walk}
|
||||
\galleryimage{walks/tree-walk}
|
||||
\galleryimage{walks/walk-6}
|
||||
\end{gallery}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Weg}
|
||||
\begin{block}{Weg}
|
||||
Sei $G = (E, K)$ ein Graph und $A = (k_1, k_2 \dots, k_s)$ ein Kantenzug.
|
||||
|
||||
A heißt \textbf{Weg} $:\Leftrightarrow \forall_{i, j \in 1, \dots, s}: i \neq j \Rightarrow k_i \neq k_j$ .
|
||||
\end{block}
|
||||
|
||||
\pause
|
||||
|
||||
\begin{exampleblock}{Salopp}
|
||||
Ein Kantenzug, bei dem man keine Kante mehrfach abläuft, ist ein Weg.
|
||||
\end{exampleblock}
|
||||
|
||||
\pause
|
||||
|
||||
Achtung: Knoten dürfen mehrfach abgelaufen werden!
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Kreis}
|
||||
\begin{block}{Kreis}
|
||||
Sei $G = (E, K)$ ein Graph und $A = (k_1, k_2 \dots, k_s)$ ein Kantenzug.
|
||||
|
||||
A heißt \textbf{Kreis} $:\Leftrightarrow A$ ist geschlossen und ein Weg.
|
||||
\end{block}
|
||||
|
||||
\pause
|
||||
|
||||
Manchmal wird das auch "`einfacher Kreis"' genannt.
|
||||
|
||||
\pause
|
||||
|
||||
\begin{gallery}
|
||||
\galleryimage[Green]{graphs/circle-one-facet}
|
||||
\galleryimage[Green]{graphs/circle-two-facets}
|
||||
\end{gallery}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Zusammenhängender Graph}
|
||||
\begin{block}{Zusammenhängender Graph}
|
||||
Sei $G = (E, K)$ ein Graph.
|
||||
|
||||
$G$ heißt \textbf{zusammenhängend} $:\Leftrightarrow \forall e_1, e_2 \in E: $ Es ex. ein Kantenzug, der $e_1$ und $e_2$ verbindet
|
||||
\end{block}
|
||||
|
||||
\begin{gallery}
|
||||
\galleryimage[red]{graphs/graph-1}
|
||||
\galleryimage[red]{graphs/graph-2}
|
||||
\galleryimage[Green]{graphs/k-3-3}
|
||||
\galleryimage[Green]{graphs/k-5}\\
|
||||
\galleryimage[Green]{graphs/k-16}
|
||||
\galleryimage[Green]{graphs/graph-6}
|
||||
\galleryimage[Green]{graphs/star-graph}
|
||||
\galleryimage[Green]{graphs/tree}
|
||||
\end{gallery}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Grad einer Ecke}
|
||||
\begin{block}{Grad einer Ecke}
|
||||
Der \textbf{Grad} einer Ecke ist die Anzahl der Kanten, die von dieser Ecke
|
||||
ausgehen.
|
||||
\end{block}
|
||||
|
||||
\begin{block}{Isolierte Ecken}
|
||||
Hat eine Ecke den Grad 0, so nennt man ihn \textbf{isoliert}.
|
||||
\end{block}
|
||||
|
||||
\begin{gallery}
|
||||
\galleryimage{graphs/graph-1}
|
||||
\galleryimage{graphs/graph-2}
|
||||
\galleryimage{graphs/k-3-3}
|
||||
\galleryimage{graphs/k-5}\\
|
||||
\galleryimage{graphs/k-16}
|
||||
\galleryimage{graphs/graph-6}
|
||||
\galleryimage{graphs/star-graph}
|
||||
\galleryimage{graphs/tree}
|
||||
\end{gallery}
|
||||
\end{frame}
|
|
@ -0,0 +1,21 @@
|
|||
\documentclass[varwidth=true, border=2pt]{standalone}
|
||||
\usepackage{tikz}
|
||||
|
||||
\begin{document}
|
||||
\tikzstyle{vertex}=[draw,fill=black,circle,minimum size=3pt,inner sep=0pt]
|
||||
\begin{tikzpicture}
|
||||
\node[vertex] (N-1) at (0,0) {};
|
||||
\node[vertex] (N-2) at (0,1) {};
|
||||
\node[vertex] (N-3) at (1,0) {};
|
||||
\node[vertex] (N-4) at (1,1) {};
|
||||
|
||||
\draw (N-1) -- (N-2);
|
||||
\draw (N-1) -- (N-3);
|
||||
\draw (N-1) -- (N-4);
|
||||
|
||||
\draw (N-2) -- (N-3);
|
||||
\draw (N-2) -- (N-4);
|
||||
|
||||
\draw (N-3) -- (N-4);
|
||||
\end{tikzpicture}
|
||||
\end{document}
|
|
@ -0,0 +1,19 @@
|
|||
\documentclass[varwidth=true, border=2pt]{standalone}
|
||||
\usepackage{tikz}
|
||||
|
||||
\begin{document}
|
||||
\tikzstyle{vertex}=[draw,fill=black,circle,minimum size=3pt,inner sep=0pt]
|
||||
\begin{tikzpicture}
|
||||
\node[vertex] (N-1) at (0,0) {};
|
||||
\node[vertex] (N-2) at (0,1) {};
|
||||
\node[vertex] (N-3) at (1,0) {};
|
||||
\node[vertex] (N-4) at (1,1) {};
|
||||
|
||||
\draw (N-1) -- (N-2);
|
||||
\draw (N-1) -- (N-3);
|
||||
|
||||
\draw (N-2) -- (N-4);
|
||||
|
||||
\draw (N-3) -- (N-4);
|
||||
\end{tikzpicture}
|
||||
\end{document}
|
|
@ -0,0 +1,15 @@
|
|||
\documentclass[varwidth=true, border=2pt]{standalone}
|
||||
\usepackage{tikz}
|
||||
|
||||
\begin{document}
|
||||
\tikzstyle{vertex}=[draw,fill=black,circle,minimum size=3pt,inner sep=0pt]
|
||||
\begin{tikzpicture}
|
||||
\node[vertex] (N-1) at (0,0) {};
|
||||
\node[vertex] (N-2) at (0,1) {};
|
||||
\node[vertex] (N-3) at (1,0) {};
|
||||
\node[vertex] (N-4) at (1,1) {};
|
||||
|
||||
\draw (N-2) -- (N-4);
|
||||
\draw (N-1) -- (N-3);
|
||||
\end{tikzpicture}
|
||||
\end{document}
|
|
@ -0,0 +1,16 @@
|
|||
\documentclass[varwidth=true, border=2pt]{standalone}
|
||||
\usepackage{tikz}
|
||||
|
||||
\begin{document}
|
||||
\tikzstyle{vertex}=[draw,fill=black,circle,minimum size=3pt,inner sep=0pt]
|
||||
\begin{tikzpicture}
|
||||
\node[vertex] (N-1) at (0,0) {};
|
||||
\node[vertex] (N-2) at (0,1) {};
|
||||
\node[vertex] (N-3) at (1,0) {};
|
||||
\node[vertex] (N-4) at (1,1) {};
|
||||
|
||||
\draw (N-1) -- (N-2);
|
||||
\draw (N-2) -- (N-4);
|
||||
\draw (N-4) -- (N-3);
|
||||
\end{tikzpicture}
|
||||
\end{document}
|
|
@ -0,0 +1,19 @@
|
|||
\documentclass[varwidth=true, border=2pt]{standalone}
|
||||
\usepackage{tikz}
|
||||
|
||||
\begin{document}
|
||||
\tikzstyle{vertex}=[draw,fill=black,circle,minimum size=3pt,inner sep=0pt]
|
||||
\begin{tikzpicture}
|
||||
\node[vertex] (N-1) at (0,0) {};
|
||||
\node[vertex] (N-2) at (0,1) {};
|
||||
\node[vertex] (N-3) at (1,0) {};
|
||||
\node[vertex] (N-4) at (1,1) {};
|
||||
|
||||
\draw (N-1) -- (N-2);
|
||||
\draw (N-1) -- (N-3);
|
||||
\draw (N-1) -- (N-4);
|
||||
|
||||
\draw (N-2) -- (N-3);
|
||||
\draw (N-2) -- (N-4);
|
||||
\end{tikzpicture}
|
||||
\end{document}
|
|
@ -0,0 +1,18 @@
|
|||
\documentclass[varwidth=true, border=2pt]{standalone}
|
||||
\usepackage{tikz}
|
||||
|
||||
\begin{document}
|
||||
\tikzstyle{vertex}=[draw,fill=black,circle,minimum size=3pt,inner sep=0pt]
|
||||
\begin{tikzpicture}
|
||||
\node[vertex] (N-1) at (0,0) {};
|
||||
\node[vertex] (N-2) at (0,1) {};
|
||||
\node[vertex] (N-3) at (1,0) {};
|
||||
\node[vertex] (N-4) at (1,1) {};
|
||||
|
||||
\draw (N-1) -- (N-2);
|
||||
\draw (N-1) -- (N-3);
|
||||
\draw (N-1) -- (N-4);
|
||||
|
||||
\draw (N-2) -- (N-3);
|
||||
\end{tikzpicture}
|
||||
\end{document}
|
|
@ -0,0 +1,16 @@
|
|||
\documentclass[varwidth=true, border=2pt]{standalone}
|
||||
\usepackage{tikz}
|
||||
|
||||
\begin{document}
|
||||
\tikzstyle{vertex}=[draw,fill=black,circle,minimum size=3pt,inner sep=0pt]
|
||||
\begin{tikzpicture}
|
||||
\node[vertex] (N-1) at (0,0) {};
|
||||
\node[vertex] (N-2) at (0,1) {};
|
||||
\node[vertex] (N-3) at (1,0) {};
|
||||
\node[vertex] (N-4) at (1,1) {};
|
||||
|
||||
\draw (N-1) -- (N-2);
|
||||
\draw (N-1) -- (N-3);
|
||||
\draw (N-1) -- (N-4);
|
||||
\end{tikzpicture}
|
||||
\end{document}
|
|
@ -0,0 +1,16 @@
|
|||
\documentclass[varwidth=true, border=2pt]{standalone}
|
||||
\usepackage{tikz}
|
||||
|
||||
\begin{document}
|
||||
\tikzstyle{vertex}=[draw,fill=black,circle,minimum size=3pt,inner sep=0pt]
|
||||
\begin{tikzpicture}
|
||||
\node[vertex] (N-1) at (0,0) {};
|
||||
\node[vertex] (N-2) at (0,1) {};
|
||||
\node[vertex] (N-3) at (1,0) {};
|
||||
\node[vertex] (N-4) at (1,1) {};
|
||||
|
||||
\draw (N-1) -- (N-2);
|
||||
\draw (N-2) -- (N-4);
|
||||
\draw (N-4) -- (N-1);
|
||||
\end{tikzpicture}
|
||||
\end{document}
|
|
@ -0,0 +1,15 @@
|
|||
\documentclass[varwidth=true, border=2pt]{standalone}
|
||||
\usepackage{tikz}
|
||||
|
||||
\begin{document}
|
||||
\tikzstyle{vertex}=[draw,fill=black,circle,minimum size=3pt,inner sep=0pt]
|
||||
\begin{tikzpicture}
|
||||
\node[vertex] (N-1) at (0,0) {};
|
||||
\node[vertex] (N-2) at (0,1) {};
|
||||
\node[vertex] (N-3) at (1,0) {};
|
||||
\node[vertex] (N-4) at (1,1) {};
|
||||
|
||||
\draw (N-2) -- (N-4);
|
||||
\draw (N-1) -- (N-2);
|
||||
\end{tikzpicture}
|
||||
\end{document}
|
|
@ -0,0 +1,14 @@
|
|||
\documentclass[varwidth=true, border=2pt]{standalone}
|
||||
\usepackage{tikz}
|
||||
|
||||
\begin{document}
|
||||
\tikzstyle{vertex}=[draw,fill=black,circle,minimum size=3pt,inner sep=0pt]
|
||||
\begin{tikzpicture}
|
||||
\node[vertex] (N-1) at (0,0) {};
|
||||
\node[vertex] (N-2) at (0,1) {};
|
||||
\node[vertex] (N-3) at (1,0) {};
|
||||
\node[vertex] (N-4) at (1,1) {};
|
||||
|
||||
\draw (N-2) -- (N-4);
|
||||
\end{tikzpicture}
|
||||
\end{document}
|
|
@ -0,0 +1,12 @@
|
|||
\documentclass[varwidth=true, border=2pt]{standalone}
|
||||
\usepackage{tikz}
|
||||
|
||||
\begin{document}
|
||||
\tikzstyle{vertex}=[draw,fill=black,circle,minimum size=3pt,inner sep=0pt]
|
||||
\begin{tikzpicture}
|
||||
\node[vertex] (N-1) at (0,0) {};
|
||||
\node[vertex] (N-2) at (0,1) {};
|
||||
\node[vertex] (N-3) at (1,0) {};
|
||||
\node[vertex] (N-4) at (1,1) {};
|
||||
\end{tikzpicture}
|
||||
\end{document}
|
|
@ -0,0 +1,20 @@
|
|||
\documentclass[varwidth=true, border=2pt]{standalone}
|
||||
\usepackage{tikz}
|
||||
|
||||
\begin{document}
|
||||
\tikzstyle{vertex}=[draw,fill=black,circle,minimum size=3pt,inner sep=0pt]
|
||||
\begin{tikzpicture}
|
||||
\node[vertex] (N-1) at (0,0) {};
|
||||
\node[vertex] (N-2) at (0,1) {};
|
||||
\node[vertex] (N-3) at (1,0) {};
|
||||
\node[vertex] (N-4) at (1,1) {};
|
||||
|
||||
\draw (N-1) -- (N-2);
|
||||
\draw (N-1) -- (N-3);
|
||||
\draw (N-1) -- (N-4);
|
||||
|
||||
\draw (N-2) -- (N-4);
|
||||
|
||||
\draw (N-3) -- (N-4);
|
||||
\end{tikzpicture}
|
||||
\end{document}
|
Loading…
Add table
Add a link
Reference in a new issue