2
0
Fork 0
mirror of https://github.com/MartinThoma/LaTeX-examples.git synced 2025-04-19 11:38:05 +02:00

updated presentation

This commit is contained in:
Martin Thoma 2014-11-02 11:21:49 +01:00
parent 9e093b2657
commit 1c329237ae
8 changed files with 39 additions and 63 deletions

View file

@ -26,22 +26,16 @@
\section{What is my Bachelor's thesis about?}
\input{introduction}
\section{write-math.com and HWRT}
\input{write-math}
% \section{Preprocessing and Features}
% \input{preprocessing}
% \input{features}
\section{Preprocessing and Features}
\input{preprocessing}
\input{features}
\section{Evaluation}
\input{evaluation}
% \section{What will I do next?}
% \input{will-do}
\section*{End}
\subsection{End}
\input{sources}
\input{end}
\framedgraphic{Thanks for Your Attention!}{../images/xi.png}
\end{document}

View file

@ -0,0 +1,25 @@
\subsection{HWRT and write-math.com}
\begin{frame}{HWRT and write-math.com}
Two software projects were created:
\begin{itemize}
\item \href{http://write-math.com}{write-math.com}: A website where
on-line handwritten data gets collected and classified
\item \href{https://github.com/MartinThoma/hwrt}{hwrt}: The
\textit{handwriting recognition toolkit} is a Python project for
handwriting recognition
\end{itemize}
This presentation and the bachelor's thesis will be at
\href{http://martin-thoma.com/write-math/}{martin-thoma.com/write-math}.
\end{frame}
\subsection{Sources}
\begin{frame}{Image Sources}
\begin{itemize}
\item \href{https://commons.wikimedia.org/wiki/File:Server-multiple.svg}{Server} by RRZEicons
\item \href{https://commons.wikimedia.org/wiki/File:Computer-aj_aj_ashton_01.svg}{Desktop Computer} by Ed g2s,
Ironbrother, Kierancassel and Msgj
\item \href{https://commons.wikimedia.org/wiki/File:Server_by_mimooh.svg}{Server} by Mimooh
\end{itemize}
\end{frame}

View file

@ -92,17 +92,18 @@
\begin{frame}{Complex classifier}
\textbf{Preprocessing:} Connect strokes, scale, shift and linear interpolation\\
\textbf{Features:} Coordinates of 80 points (4 strokes with 20 points each), re-curvature per stroke, ink, stroke count, aspect ratio\\
\textbf{Learning:} MLP, 1000 epochs, LR $\eta=0.1$, Momentum $\alpha=0.1$
\textbf{Learning:} MLP, 1000 epochs, LR $\eta=0.1$, Momentum $\alpha=0.1$, supervised layer-wise pretraining
\begin{table}[htb]
\centering
\begin{tabular}{lrrrrrr}
\toprule
\multirow{2}{*}{System} & \multicolumn{3}{c}{Classification error}\\
\multirow{2}{*}{System} & \multicolumn{6}{c}{Classification error}\\
\cmidrule(l){2-7}
& TOP1 & change & TOP3 & change & MER & change \\\midrule
$B_{1,c}$ & $\SI{20.96}{\percent}$ & $\SI{-2.38}{\percent}$ & $\SI{5.24}{\percent}$ & $\SI{-1.56}{\percent}$ & $\SI{5.13}{\percent}$ & $\SI{-1.51}{\percent}$ \\
$B_{2,c}$ & $\SI{20.10}{\percent}$ & $\SI{-1.41}{\percent}$ & $\SI{4.44}{\percent}$ & $\SI{-1.31}{\percent}$ & $\SI{4.36}{\percent}$ & $\SI{-1.31}{\percent}$ \\
$B_{3,c}$ & $\SI{21.51}{\percent}$ & $\SI{-0.42}{\percent}$ & $\SI{4.89}{\percent}$ & $\SI{-0.85}{\percent}$ & $\SI{4.80}{\percent}$ & $\SI{-0.84}{\percent}$ \\
$B_{4,c}$ & $\SI{00.00}{\percent}$ & $\SI{-0.00}{\percent}$ & $\SI{0.00}{\percent}$ & $\SI{-0.00}{\percent}$ & $\SI{0.00}{\percent}$ & $\SI{-0.00}{\percent}$ \\
$B_{2,c}$ & $\SI{18.26}{\percent}$ & $\SI{-3.25}{\percent}$ & $\SI{4.07}{\percent}$ & $\SI{-1.68}{\percent}$ & \underline{$\SI{3.98}{\percent}$} & $\SI{-1.69}{\percent}$ \\
$B_{3,c}$ & \underline{$\SI{18.19}{\percent}$} & $\SI{-3.74}{\percent}$ & \underline{$\SI{4.06}{\percent}$} & $\SI{-1.68}{\percent}$ & $\SI{3.99}{\percent}$ & $\SI{-1.65}{\percent}$ \\
$B_{4,c}$ & $\SI{18.57}{\percent}$ & $\SI{-5.31}{\percent}$ & $\SI{4.25}{\percent}$ & $\SI{-1.87}{\percent}$ & $\SI{4.18}{\percent}$ & $\SI{-1.86}{\percent}$ \\
\bottomrule
\end{tabular}
\caption{Error rates of the complex recognizer systems.}

View file

@ -18,6 +18,8 @@
\item Center point
\item Bitmap
\item Bounding box (width, height, time)
\item Re-curvature
\item Ink
\end{itemize}
\end{itemize}
\end{frame}

View file

@ -5,7 +5,7 @@
\item Recognition of handwritten mathematical symbols
\item On-line recognition, not OCR!
\item Given a series of points $(x(t), y(t), b(t))$\\
I want to get the proper \LaTeX{} command.
I want to get the \LaTeX{} command.
\end{itemize}
\end{frame}
@ -16,15 +16,5 @@
\item It's much harder to find complete formulas.
\end{itemize}
% I want to
% \begin{itemize}
% \item provide a tool that enables beginners to get the best \LaTeX{} command
% for their formula,
% \item find out what works best for symbol recognition
% \item and provide data and a platform to test new ideas for classifiers
% \end{itemize}
For now: recognition of isolated symbols. That means:
single symbol \enquote{formulas} rather than multi-symbol formulas
For now: recognition of isolated symbols.
\end{frame}

View file

@ -1,12 +0,0 @@
\subsection{Sources}
\begin{frame}{Image Sources}
\begin{itemize}
\item \href{https://commons.wikimedia.org/wiki/File:Server-multiple.svg}{Server} by RRZEicons
\item \href{https://commons.wikimedia.org/wiki/File:Computer-aj_aj_ashton_01.svg}{Desktop Computer} by Ed g2s,
Ironbrother, Kierancassel and Msgj
\item \href{https://commons.wikimedia.org/wiki/File:Server_by_mimooh.svg}{Server} by Mimooh
\end{itemize}
The presentation can be found at \url{http://tinyurl.com/write-math-short-presentation}
\end{frame}

View file

@ -1,24 +0,0 @@
\subsection{What will I do next?}
\begin{frame}{What will I do next?}
\begin{itemize}
\item Include the currently best model in write-math.com
\item Evaluate preprocessing steps
\item Try other features
\item Try other topologies / trainings (e.g. pretraining, newbob)
\item Eventually try convolutional neural nets
\end{itemize}
\end{frame}
% \subsection{Far future}
% \begin{frame}{What could be done?}
% \begin{itemize}
% \item Make use of audio data in a multimodal approach\\
% e.g. $R$ and $\mathcal{R}$
% \item Currently, the Lecture Translation system doesn't recognize math.\\
% You get \enquote{integral of e raised to the power of x d x} instead
% of $\int e^x \mathrm{d} x$.
% \item Spoken math is ambigous: $\sqrt{a+b}$ vs. $\sqrt{a} + b$
% \item The language model I create could help to find probable formulas
% \item The platform could be used to get more input data of users
% \end{itemize}
% \end{frame}