mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-25 14:28:05 +02:00
Änderungen der Zugfahrt eingearbeitet.
This commit is contained in:
parent
44b274b3a6
commit
102fe0447b
10 changed files with 129 additions and 79 deletions
|
@ -1,8 +1,13 @@
|
|||
\chapter{Constant functions}
|
||||
\section{Defined on $\mdr$}
|
||||
\begin{lemma}
|
||||
Let $f:\mdr \rightarrow \mdr$, $f(x) := c$ with $c \in \mdr$ be a constant function.
|
||||
The situation can be seen in Figure~\ref{fig:constant-min-distance}.
|
||||
|
||||
Then $(x_P, f(x_P))$ is the only point on the graph of $f$ with
|
||||
minimal distance to $P$.
|
||||
\end{lemma}
|
||||
|
||||
The situation can be seen in Figure~\ref{fig:constant-min-distance}.
|
||||
\begin{figure}[htp]
|
||||
\centering
|
||||
\begin{tikzpicture}
|
||||
|
@ -43,20 +48,19 @@ The situation can be seen in Figure~\ref{fig:constant-min-distance}.
|
|||
\label{fig:constant-min-distance}
|
||||
\end{figure}
|
||||
|
||||
\begin{proof}
|
||||
The point $(x, f(x))$ with minimal distance can be calculated directly:
|
||||
\begin{align}
|
||||
d_{P,f}(x) &= \sqrt{(x_P - x)^2 + (y_P - f(x))^2}\\
|
||||
&= \sqrt{(x_P^2 - 2x_P x + x^2) + (y_P^2 - 2 y_P c + c^2)} \\
|
||||
&= \sqrt{x^2 - 2 x_P x + (x_P^2 + y_P^2 - 2 y_P c + c^2)}\label{eq:constant-function-distance}\\
|
||||
d_{P,f}(x) &= \sqrt{(x - x_P)^2 + (f(x) - y_P)^2}\\
|
||||
&= \sqrt{(x^2 - 2x_P x + x_P^2) + (c^2 - 2 c y_P + y_P^2)} \\
|
||||
&= \sqrt{x^2 - 2 x_P x + (x_P^2 + c^2 - 2 c y_P + y_P^2)}\label{eq:constant-function-distance}\\
|
||||
\xRightarrow{\text{Theorem}~\ref{thm:fermats-theorem}} 0 &\stackrel{!}{=} (d_{P,f}(x)^2)'\\
|
||||
&= 2x - 2x_P\\
|
||||
\Leftrightarrow x &\stackrel{!}{=} x_P
|
||||
\end{align}
|
||||
|
||||
Then $(x_P,f(x_P))$ has
|
||||
minimal distance to $P$. Every other point has higher distance.
|
||||
See Figure~\ref{fig:constant-min-distance} to see that intuition
|
||||
yields to the same results.
|
||||
So $(x_P,f(x_P))$ is the only point with minimal distance to $P$. $\qed$
|
||||
\end{proof}
|
||||
|
||||
This result means:
|
||||
|
||||
|
@ -124,8 +128,7 @@ given by:
|
|||
\begin{proof}
|
||||
\begin{align}
|
||||
\underset{x\in[a,b]}{\arg \min d_{P,f}(x)} &= \underset{x\in[a,b]}{\arg \min d_{P,f}(x)^2}\\
|
||||
&=\underset{x\in[a,b]}{\arg \min} \big (x^2 - 2x_P x + x_P^2 + \overbrace{(y_P^2 - 2 y_P c + c^2)}^{\text{constant}} \big )\\
|
||||
&=\underset{x\in[a,b]}{\arg \min} (x^2 - 2 x_P x + x_P^2)\\
|
||||
&=\underset{x\in[a,b]}{\arg \min} \big ((x-x_P)^2 + \overbrace{(y_P^2 - 2 y_P c + c^2)}^{\text{constant}} \big )\\
|
||||
&=\underset{x\in[a,b]}{\arg \min} (x-x_P)^2
|
||||
\end{align}
|
||||
|
||||
|
|
|
@ -1,8 +1,8 @@
|
|||
\chapter{Cubic functions}
|
||||
\section{Defined on $\mdr$}
|
||||
Let $f(x) = a \cdot x^3 + b \cdot x^2 + c \cdot x + d$ be a cubic function
|
||||
with $a \in \mdr \setminus \Set{0}$ and
|
||||
$b, c, d \in \mdr$ be a function.
|
||||
Let $f:\mdr \rightarrow \mdr, f(x) = a \cdot x^3 + b \cdot x^2 + c \cdot x + d$
|
||||
be a cubic function with $a \in \mdr \setminus \Set{0}$ and
|
||||
$b, c, d \in \mdr$.
|
||||
|
||||
\begin{figure}[htp]
|
||||
\centering
|
||||
|
@ -50,8 +50,8 @@ $b, c, d \in \mdr$ be a function.
|
|||
%\todo[inline]{Write this}
|
||||
|
||||
\subsection{Calculate points with minimal distance}
|
||||
\begin{theorem}
|
||||
There cannot be an algebraic solution to the problem of finding
|
||||
\begin{theorem}\label{thm:no-finite-solution}
|
||||
There cannot be a finite, closed form solution to the problem of finding
|
||||
a closest point $(x, f(x))$ to a given point $P$ when $f$ is
|
||||
a polynomial function of degree $3$ or higher.
|
||||
\end{theorem}
|
||||
|
@ -71,29 +71,29 @@ $b, c, d \in \mdr$ be a function.
|
|||
|
||||
General algebraic equations of degree 5 don't have a solution formula.\footnote{TODO: Quelle}
|
||||
Although here seems to be more structure, the resulting algebraic
|
||||
equation can be almost any polynomial of degree 5:\footnote{Thanks to Peter Košinár on \href{http://math.stackexchange.com/a/584814/6876}{math.stackexchange.com} for this one}
|
||||
equation can be almost any polynomial of degree 5:\footnote{Thanks to Peter Košinár on \href{http://math.stackexchange.com/a/584814/6876}{math.stackexchange.com} for the idea.}
|
||||
|
||||
\begin{align}
|
||||
0 &\stackrel{!}{=} f'(x) \cdot \left (f(x) - y_p \right ) + (x - x_p)\\
|
||||
&= \underbrace{3 a^2}_{= \tilde{a}} x^5 + \underbrace{5ab}_{\tilde{b}}x^4 + \underbrace{2(2ac + b^2 )}_{=: \tilde{c}}x^3 &+& \underbrace{3(ad+bc-ay_p)}_{\tilde{d}} x^2 \\
|
||||
& &+& \underbrace{(2 b d+c^2+1-2 b y_p)}_{=: \tilde{e}}x+\underbrace{c d-c y_p-x_p}_{=: \tilde{f}}\\
|
||||
&= \underbrace{3 a^2}_{= \tilde{a}} x^5 + \underbrace{5ab}_{= \tilde{b}}x^4 + \underbrace{2(2ac + b^2 )}_{= \tilde{c}}x^3 &+& \underbrace{3(ad+bc-ay_p)}_{= \tilde{d}} x^2 \\
|
||||
& &+& \underbrace{(2 b d+c^2+1-2 b y_p)}_{= \tilde{e}}x+\underbrace{c d-c y_p-x_p}_{= \tilde{f}}\\
|
||||
0 &\stackrel{!}{=} \tilde{a}x^5 + \tilde{b}x^4 + \tilde{c}x^3 + \tilde{d}x^2 + \tilde{e}x + \tilde{f}
|
||||
\end{align}
|
||||
|
||||
\begin{enumerate}
|
||||
\item For any coefficient $\tilde{a} \in \mdr_{> 0}$ of $x^5$ we can choose $a$ such that we get $\tilde{a}$.
|
||||
\item For any coefficient $\tilde{b} \in \mdr \setminus \Set{0}$ of $x^4$ we can choose $b$ such that we get $\tilde{b}$.
|
||||
\item With $c$, we can get any value of $\tilde{c} \in \mdr$.
|
||||
\item With $d$, we can get any value of $\tilde{d} \in \mdr$.
|
||||
\item With $y_p$, we can get any value of $\tilde{e} \in \mdr$.
|
||||
\item With $x_p$, we can get any value of $\tilde{f} \in \mdr$.
|
||||
\item For any coefficient $\tilde{a} \in \mdr_{> 0}$ of $x^5$ we can choose $a := \frac{1}{3} \sqrt{\tilde{a}}$ such that we get $\tilde{a}$.
|
||||
\item For any coefficient $\tilde{b} \in \mdr \setminus \Set{0}$ of $x^4$ we can choose $b := \frac{1}{5a} \cdot \tilde{b}$ such that we get $\tilde{b}$.
|
||||
\item With $c := -2b^2 + \frac{1}{4a} \tilde{c}$, we can get any value of $\tilde{c} \in \mdr$.
|
||||
\item With $d := -bc + a y_p + \frac{1}{a} \tilde{d}$, we can get any value of $\tilde{d} \in \mdr$.
|
||||
\item With $y_p := \frac{1}{2b}(2bd + c^2)\cdot \tilde{e}$, we can get any value of $\tilde{e} \in \mdr$.
|
||||
\item With $x_p := cd - c y_P+\tilde{f}$, we can get any value of $\tilde{f} \in \mdr$.
|
||||
\end{enumerate}
|
||||
|
||||
The first restriction guaratees that we have a polynomial of
|
||||
degree 5. The second one is necessary, to get a high range of
|
||||
$\tilde{e}$.
|
||||
|
||||
This means, that there is no solution formula for the problem of
|
||||
This means that there is no finite solution formula for the problem of
|
||||
finding the closest points on a cubic function to a given point,
|
||||
because if there was one, you could use this formula for finding
|
||||
roots of polynomials of degree 5. $\qed$
|
||||
|
@ -101,9 +101,6 @@ $b, c, d \in \mdr$ be a function.
|
|||
|
||||
|
||||
\subsection{Another approach}
|
||||
\todo[inline]{Currently, this is only an idea. It might be usefull
|
||||
to move the cubic function $f$ such that $f$ is point symmetric
|
||||
to the origin. But I'm not sure how to make use of this symmetry.}
|
||||
Just like we moved the function $f$ and the point to get in a
|
||||
nicer situation, we can apply this approach for cubic functions.
|
||||
|
||||
|
@ -144,7 +141,7 @@ nicer situation, we can apply this approach for cubic functions.
|
|||
\caption{Cubic functions with $b = d = 0$}
|
||||
\end{figure}
|
||||
|
||||
First, we move $f_0$ by $\frac{b}{3a}$ to the right, so
|
||||
First, we move $f_0$ by $\frac{b}{3a}$ in $x$ direction, so
|
||||
|
||||
\[f_1(x) = ax^3 + \frac{b^2 (c-1)}{3a} x + \frac{2b^3}{27 a^2} - \frac{bc}{3a} + d \;\;\;\text{ and }\;\;\;P_1 = (x_P + \frac{b}{3a}, y_P)\]
|
||||
|
||||
|
@ -161,6 +158,19 @@ because
|
|||
&= ax^3 + \frac{b^2}{3a}\left (1-2+c \right )x + \frac{b^3}{9a^2} \left (1-\frac{1}{3} \right )- \frac{bc}{3a} + d
|
||||
\end{align}
|
||||
|
||||
The we move it in $y$ direction by $- (\frac{2b^3}{27 a^2} - \frac{bc}{3a} + d)$:
|
||||
|
||||
\[f_2(x) = ax^3 + \frac{b^2 (c-1)}{3a} x \;\;\;\text{ and }\;\;\;P_2 = (x_P + \frac{b}{3a}, y_P - (\frac{2b^3}{27 a^2} - \frac{bc}{3a} + d))\]
|
||||
|
||||
Multiply everything by $\sgn(a)$:
|
||||
|
||||
\[f_3(x) = \underbrace{|a|}_{=: \alpha}x^3 + \underbrace{\frac{b^2 (c-1)}{3|a|}}_{=: \beta} x \;\;\;\text{ and }\;\;\;P_2 = (x_P + \frac{b}{3a}, \sgn(a) (y_P - \frac{2b^3}{27 a^2} + \frac{bc}{3a} - d))\]
|
||||
|
||||
Now the problem seems to be much simpler. The function $\alpha x^3 + \beta x$
|
||||
with $\alpha > 0$ is centrally symmetric to $(0, 0)$.
|
||||
|
||||
\todo[inline]{Und weiter?}
|
||||
|
||||
\subsection{Number of points with minimal distance}
|
||||
As this leads to a polynomial of degree 5 of which we have to find
|
||||
roots, there cannot be more than 5 solutions.
|
||||
|
@ -211,9 +221,6 @@ As soon as the values don't change much, you are close to a root.
|
|||
The problem of this approach is choosing a starting value that is
|
||||
close enough to the root. So we have to have a \enquote{good}
|
||||
initial guess.
|
||||
|
||||
\subsubsection{Quadratic minimization}
|
||||
\todo[inline]{TODO}
|
||||
\clearpage
|
||||
|
||||
\subsubsection{Muller's method}
|
||||
|
|
|
@ -7,9 +7,8 @@ is by applying the \href{https://en.wikipedia.org/wiki/PID_algorithm}{PID algori
|
|||
This algorithm needs to know the signed current error. So you need to
|
||||
be able to get the minimal distance of a point (the position of the car)
|
||||
to a cubic spline (the prefered path)
|
||||
combined with the direction (left or right).
|
||||
As you need to get the signed error (and one steering direction might
|
||||
be prefered), it is not only necessary to
|
||||
combined with sign (which represents the steering direction).
|
||||
As one steering direction might be prefered, it is not only necessary to
|
||||
get the minimal absolute distance, but might also help to get all points
|
||||
on the spline with minimal distance.
|
||||
|
||||
|
|
|
@ -5,7 +5,8 @@
|
|||
$f(x) := m \cdot x + t$ with $m \in \mdr \setminus \Set{0}$ and
|
||||
$t \in \mdr$ be a linear function.
|
||||
|
||||
Then the points $(x, f(x))$ with minimal distance are given by:
|
||||
Then there is only one point $(x, f(x))$ on the graph of $f$ with
|
||||
minimal distance to $P = (x_P, y_P)$. This point is given by
|
||||
\[x = \frac{m}{m^2+1} \left ( y_P + \frac{1}{m} \cdot x_P - t \right )\]
|
||||
\end{theorem}
|
||||
|
||||
|
@ -35,6 +36,8 @@
|
|||
\addplot[domain=-5:5, thick,samples=50, red] {0.5*x};
|
||||
\addplot[domain=-5:5, thick,samples=50, blue, dashed] {-2*x+6};
|
||||
\addplot[black, mark = *, nodes near coords=$P$,every node near coord/.style={anchor=225}] coordinates {(2, 2)};
|
||||
\newcommand{\R}{0.9}
|
||||
\addplot [domain=0:2*pi,samples=50, dotted]({\R*cos(deg(x))+2},{\R*sin(deg(x))+2});
|
||||
\addplot[blue, nodes near coords=$f_\bot$,every node near coord/.style={anchor=225}] coordinates {(1.5, 3)};
|
||||
\addplot[red, nodes near coords=$f$,every node near coord/.style={anchor=225}] coordinates {(0.9, 0.5)};
|
||||
\addlegendentry{$f(x)=\frac{1}{2}x$}
|
||||
|
@ -57,7 +60,7 @@
|
|||
&= \frac{m}{m^2+1} \left ( y_P + \frac{1}{m} \cdot x_P - t \right )\label{eq:solution-linear-r}
|
||||
\end{align}
|
||||
It is obvious that a minium has to exist, the $x$ from Equation~\ref{eq:solution-linear-r}
|
||||
has to be this minimum.
|
||||
has to be this minimum. $\qed$
|
||||
\end{proof}
|
||||
\clearpage
|
||||
|
||||
|
@ -113,4 +116,39 @@ The point with minimum distance can be found by:
|
|||
\Set{b} &\text{if } S_1(f, P) \ni x > b
|
||||
\end{cases}\]
|
||||
|
||||
\todo[inline]{argument? proof?}
|
||||
If $S_1(f, P) \cap [a,b] \neq \emptyset$, then $\underset{x\in[a,b]}{\arg \min d_{P,f}(x)} = S_1(f,P) \cap [a,b]$,
|
||||
because $S_1(f,P)$ gives all global minima of $f$. Those are also
|
||||
minima for the intervall $[a,b]$. There are not more minima, because
|
||||
$S_1$ gives all minima of $P$ to $f$.
|
||||
|
||||
If $S_1(f, P) \cap [a,b] = \emptyset$, then it is not that simple.
|
||||
But we can calculate the distance function:
|
||||
|
||||
\begin{align}
|
||||
d_{P,f}(x) &= \sqrt{(x-x_P)^2 + (f(x) - y_P)^2}\\
|
||||
&= \sqrt{(x^2 - 2x x_P + x_P^2) + (mx + (t-y_P))^2}\\
|
||||
&= \sqrt{(x^2 - 2x x_P + x_P^2) + m^2 x^2 + 2mx(t-y_P) + (t-y_P)^2}\\
|
||||
&= \sqrt{x^2(1+m^2) + x(-2 x_P + 2m(t-y_P)) + (x_P^2 + (t-y_P)^2)}
|
||||
\end{align}
|
||||
|
||||
This function (defined on $\mdr$) is symmetry to the axis
|
||||
\begin{align}
|
||||
x_S &= - \frac{-2 x_P + 2m(t-y_P)}{2(1+m^2)}\\
|
||||
&= \frac{x_P - m(t-y_P)}{1+m^2}\\
|
||||
&= \frac{m}{m^2+1} (y_P + \frac{1}{m} x_P - t)
|
||||
\end{align}
|
||||
|
||||
$f$ is on $(-\infty, x_S]$ strictly monotonically decreasing and
|
||||
on $[x_S, + \infty)$ strictly monotonically increasing.
|
||||
|
||||
Thus we can conclude:
|
||||
\[\forall x,y \in \mdr: x \leq y < x_S \Rightarrow d_{P,f}(x_S) < d_{P,f}(y) \leq d_{P,f}(x)\]
|
||||
\[\forall x,y \in \mdr: x_S < y \leq x \Rightarrow d_{P,f}(x_S) < d_{P,f}(y) \leq d_{P,f}(x)\]
|
||||
|
||||
When $S_1(f, P) \cap [a,b] = \emptyset$, then you can have two cases:
|
||||
\begin{itemize}
|
||||
\item $a \leq b < x_S$: $b$ has the shortest distance in $[a,b]$
|
||||
on the graph of $f$ to $P$.
|
||||
\item $x_S < a \leq b$: $a$ has the shortest distance in $[a,b]$
|
||||
on the graph of $f$ to $P$.
|
||||
\end{itemize}
|
||||
|
|
Binary file not shown.
|
@ -9,7 +9,7 @@ Now there is finite set $M = \Set{x_1, \dots, x_n} \subseteq D$ of minima for gi
|
|||
\[M = \Set{x \in D | d_{P,f}(x) = \min_{\overline{x} \in D} d_{P,f}(\overline{x})}\]
|
||||
|
||||
But minimizing $d_{P,f}$ is the same as minimizing
|
||||
$d_{P,f}^2 = x_p^2 - 2x_p x + x^2 + y_p^2 - 2y_p f(x) + f(x)^2$.
|
||||
$d_{P,f}^2 = (x_p^2 - 2x_p x + x^2) + (y_p^2 - 2y_p f(x) + f(x)^2)$.
|
||||
|
||||
In order to solve the minimal distance problem, Fermat's theorem
|
||||
about stationary points will be tremendously usefull:
|
||||
|
@ -20,10 +20,15 @@ about stationary points will be tremendously usefull:
|
|||
Then: $f'(x_0) = 0$.
|
||||
\end{theorem}
|
||||
|
||||
So in fact you can calculate the roots of $(d_{P,f}(x))'$ to get
|
||||
candidates for minimal distance. These candidates include all points
|
||||
with minimal distance, but might also contain more. Example~\ref{ex:false-positive}
|
||||
shows such a situation.
|
||||
So in fact you can calculate the roots of $(d_{P,f}(x))'$ or $(d_{P,f}(x)^2)'$ to get
|
||||
candidates for minimal distance.
|
||||
$(d_{P,f}(x)^2)'$ is a polynomial if $f$ is a polynomial. So if $f$
|
||||
is a polynomial, we can always get a finite number of candidates by
|
||||
finding roots of $(d_{P,f}(x)^2)'$. But this gets difficult when $f$
|
||||
has degree 3 or higher as explained in Theorem~\ref{thm:no-finite-solution}.
|
||||
Another problem one has to bear in mind is that these candidates
|
||||
include all points with minimal distance, but might also contain
|
||||
more. Example~\ref{ex:false-positive} shows such a situation.
|
||||
|
||||
Let $S_n$ be the function that returns the set of solutions for a
|
||||
polynomial $f$ of degree $n$ and a point $P$:
|
||||
|
|
|
@ -1,10 +1,8 @@
|
|||
$4 \alpha^3 + 27 \beta^2 \geq 0$:
|
||||
One solution of Equation~\ref{eq:simple-cubic-equation-for-quadratic-distance}
|
||||
is
|
||||
The first solution of $x^3 + \alpha x + \beta = 0$ is
|
||||
\[x = \frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t}\]
|
||||
|
||||
When you insert this in Equation~\ref{eq:simple-cubic-equation-for-quadratic-distance}
|
||||
you get:\footnote{Remember: $(a-b)^3 = a^3-3 a^2 b+3 a b^2-b^3$}
|
||||
Let's validate this solution:
|
||||
\allowdisplaybreaks
|
||||
\begin{align}
|
||||
0 &\stackrel{!}{=} \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right )^3 + \alpha \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right ) + \beta\\
|
||||
|
@ -12,27 +10,24 @@ you get:\footnote{Remember: $(a-b)^3 = a^3-3 a^2 b+3 a b^2-b^3$}
|
|||
- 3 (\frac{t}{\sqrt[3]{18}})^2 \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t}
|
||||
+ 3 (\frac{t}{\sqrt[3]{18}})(\frac{\sqrt[3]{\frac{2}{3}} \alpha }{t})^2
|
||||
- (\frac{\sqrt[3]{\frac{2}{3}} \alpha }{t})^3
|
||||
+ \alpha \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right ) + \beta\\
|
||||
+ \frac{t \alpha}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha^2 }{t} + \beta\\
|
||||
&= \frac{t^3}{18}
|
||||
- \frac{3t^2}{\sqrt[3]{18^2}} \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t}
|
||||
+ \frac{3t}{\sqrt[3]{18}} \frac{\sqrt[3]{\frac{4}{9}} \alpha^2 }{t^2}
|
||||
- \frac{\frac{2}{3} \alpha^3 }{t^3}
|
||||
+ \alpha \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right ) + \beta\\
|
||||
+ \frac{t \alpha }{\sqrt[3]{18}} - \frac{\sqrt[3]{2} \alpha^2 }{\sqrt[3]{3} t} + \beta\\
|
||||
&= \frac{t^3}{18}
|
||||
- \frac{\sqrt[3]{18} t \alpha}{\sqrt[3]{18^2}}
|
||||
+ \frac{\sqrt[3]{12} \alpha^2}{\sqrt[3]{18} t}
|
||||
- \frac{2 \alpha^3 }{3t^3}
|
||||
+ \alpha \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right ) + \beta\\
|
||||
+ \frac{t \alpha }{\sqrt[3]{18}} - \frac{\sqrt[3]{2} \alpha^2 }{\sqrt[3]{3} t} + \beta\\
|
||||
&= \frac{t^3}{18}
|
||||
- \frac{t \alpha}{\sqrt[3]{18}}
|
||||
\color{red}+ \frac{\sqrt[3]{2} \alpha^2}{\sqrt[3]{3} t} \color{black}
|
||||
- \frac{2 \alpha^3 }{3 t^3}
|
||||
+ \color{red}\alpha \color{black} \left (\frac{t}{\sqrt[3]{18}} \color{red}- \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \color{black}\right )
|
||||
+ \beta\\
|
||||
&= \frac{t^3}{18} \color{blue}- \frac{t \alpha}{\sqrt[3]{18}} \color{black}
|
||||
- \frac{2 \alpha^3 }{3 t^3}
|
||||
\color{blue}+ \frac{\alpha t}{\sqrt[3]{18}} \color{black}
|
||||
+ \beta\\
|
||||
\color{blue} - \frac{t \alpha}{\sqrt[3]{18}}
|
||||
\color{red} + \frac{\sqrt[3]{2} \alpha^2}{\sqrt[3]{3} t}
|
||||
\color{black}- \frac{2 \alpha^3 }{3 t^3}
|
||||
\color{blue} + \frac{t \alpha }{\sqrt[3]{18}}
|
||||
\color{red} - \frac{\sqrt[3]{2} \alpha^2 }{\sqrt[3]{3} t}
|
||||
\color{black}+ \beta\\
|
||||
&= \frac{t^3}{18} - \frac{2 \alpha^3 }{3 t^3} + \beta\\
|
||||
&= \frac{t^6 - 12 \alpha^3 + \beta 18 t^3}{18t^3}
|
||||
\end{align}
|
||||
|
|
|
@ -1,8 +1,8 @@
|
|||
One solution is
|
||||
The second solution of $x^3+\alpha x + \beta=0$ is
|
||||
\[x = \frac{(1+i \sqrt{3})\alpha}{\sqrt[3]{12} \cdot t}
|
||||
-\frac{(1-i\sqrt{3}) t}{2\sqrt[3]{18}}\]
|
||||
|
||||
We will verify it in multiple steps. First, get $x^3$:
|
||||
We will verify it in multiple steps. First, calculate $x^3$:
|
||||
\begin{align}
|
||||
x^3 &= \underbrace{\left (\frac{(1+i\sqrt{3})\alpha}{\sqrt[3]{12} \cdot t} \right)^3}_{=: \raisebox{.5pt}{\textcircled{\raisebox{-.9pt} {1}}}}
|
||||
\underbrace{- 3 \left(\frac{(1+i\sqrt{3})\alpha}{\sqrt[3]{12} \cdot t} \right)^2 \left(\frac{(1-i\sqrt{3})t}{2 \sqrt[3]{18}} \right)}_{=: \raisebox{.5pt}{\textcircled{\raisebox{-.9pt} {2}}}}\\
|
||||
|
@ -58,5 +58,7 @@ Now continue with only the numerator
|
|||
\color{orange}- 2 \cdot \sqrt{3(4 \alpha^3 + 27 \beta^2)} \cdot 9\beta\color{black}
|
||||
+ \color{blue}81 \beta^2\color{black}
|
||||
\right )\\
|
||||
&\hphantom{{}=}+ 18 \beta (\color{orange}\sqrt{3(4 \alpha^3 + 27 \beta^2)}\color{black} \color{blue}- 9 \beta\color{black})
|
||||
&\hphantom{{}=}+ 18 \beta (\color{orange}\sqrt{3(4 \alpha^3 + 27 \beta^2)}\color{black} \color{blue}- 9 \beta\color{black}) \\
|
||||
&= 81 \beta^2 + 81 \beta^2 - 2 \cdot 81 \beta^2\\
|
||||
&= 0
|
||||
\end{align}
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
One solution is
|
||||
The third and thus last solution of $x^3 + \alpha x + \beta = 0$ is
|
||||
\[x = \frac{(1-i \sqrt{3}) \alpha}{\sqrt[3]{12} \cdot t}
|
||||
-\frac{(1+i\sqrt{3}) t}{2\sqrt[3]{18}}\]
|
||||
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
\chapter{Quadratic functions}
|
||||
\section{Defined on $\mdr$}
|
||||
Let $f(x) = a \cdot x^2 + b \cdot x + c$ with $a \in \mdr \setminus \Set{0}$ and
|
||||
Let $f:\mdr \rightarrow \mdr, f(x) = a \cdot x^2 + b \cdot x + c$ with $a \in \mdr \setminus \Set{0}$ and
|
||||
$b, c \in \mdr$ be a quadratic function.
|
||||
|
||||
\begin{figure}[htp]
|
||||
|
@ -41,7 +41,7 @@ $b, c \in \mdr$ be a quadratic function.
|
|||
\end{figure}
|
||||
|
||||
\subsection{Calculate points with minimal distance}
|
||||
In this case, $d_{P,f}^2$ is polynomial of degree 4.
|
||||
In this case, $d_{P,f}^2$ is polynomial of degree $n^2 = 4$.
|
||||
We use Theorem~\ref{thm:fermats-theorem}:\nobreak
|
||||
\begin{align}
|
||||
0 &\overset{!}{=} (d_{P,f}^2)'\\
|
||||
|
@ -58,10 +58,11 @@ This is an algebraic equation of degree 3.
|
|||
There can be up to 3 solutions in such an equation. Those solutions
|
||||
can be found with a closed formula. But not every solution of the
|
||||
equation given by Theorem~\ref{thm:fermats-theorem}
|
||||
has to be a solution to the given problem.
|
||||
has to be a solution to the given problem as you can see in
|
||||
Example~\ref{ex:false-positive}.
|
||||
\goodbreak
|
||||
\begin{example}\label{ex:false-positive}
|
||||
Let $a = 1, b = 0, c= 1, x_p= 0, y_p = 1$.
|
||||
Let $a = 1, b = 0, c=-1, x_p= 0, y_p = 1$.
|
||||
So $f(x) = x^2 - 1$ and $P(0, 1)$.
|
||||
\begin{align}
|
||||
\xRightarrow{\text{Equation}~\ref{eq:quadratic-derivative-eq-0}} 0 &\stackrel{!}{=} 2x^3 - 3x\\
|
||||
|
@ -86,12 +87,13 @@ has to be a solution to the given problem.
|
|||
\begin{proof}
|
||||
The number of closests points of $f$ cannot be bigger than 3, because
|
||||
Equation~\ref{eq:quadratic-derivative-eq-0} is a polynomial function
|
||||
of degree 3. Such a function can have at most 3 roots.
|
||||
of degree 3. Such a function can have at most 3 roots. As $f$ has
|
||||
at least one point on its graph, there is at least one point with
|
||||
minimal distance.
|
||||
|
||||
In the following, I will do some transformations with $f = f_0$ and
|
||||
$P = P_0$.
|
||||
|
||||
Moving $f_0$ and $P_0$ simultaneously in $x$ or $y$ direction does
|
||||
$P = P_0$. This will make it easier to calculate the minimal distance
|
||||
points. Moving $f_0$ and $P_0$ simultaneously in $x$ or $y$ direction does
|
||||
not change the minimum distance. Furthermore, we can find the
|
||||
points with minimum distance on the moved situation and calculate
|
||||
the minimum points in the original situation.
|
||||
|
@ -128,9 +130,9 @@ Then compute:
|
|||
&= \sqrt{\left (a x^2 + \nicefrac{1}{2a}- w \right )^2 + \left (w^2 - \left (\frac{1-2 a w}{2a} \right )^2 \right)}
|
||||
\end{align}
|
||||
|
||||
The term
|
||||
This means, the term
|
||||
\[a^2 x^2 + (\nicefrac{1}{2a}- w)\]
|
||||
should get as close to $0$ as possilbe when we want to minimize
|
||||
has to get as close to $0$ as possilbe when we want to minimize
|
||||
$d_{P,{f_2}}$. For $w \leq \nicefrac{1}{2a}$ you only have $x = 0$ as a minimum.
|
||||
For all other points $P = (0, w)$, there are exactly two minima $x_{1,2} = \pm \sqrt{\frac{\frac{1}{2a} - w}{a}}$.
|
||||
$\qed$
|
||||
|
@ -153,9 +155,9 @@ Otherwise, there is only one solution $x_1 = 0$.
|
|||
&= \sqrt{a^2x^4 + (1- 2 aw)x^2 +(- 2z)x + z^2 + w^2}\\
|
||||
0 &\stackrel{!}{=} \Big(\big(d_{P, {f_2}}(x)\big)^2\Big)' \\
|
||||
&= 4a^2x^3 + 2(1- 2 aw)x +(- 2z)\\
|
||||
&= 2 \left (2a^2x^2 + (1- 2 aw) \right )x - 2z\\
|
||||
&= 2 \left (2a^2x^3 + (1- 2 aw)x \right ) - 2z\\
|
||||
\Leftrightarrow 0 &\stackrel{!}{=} 2a^2x^3 + (1- 2 aw) x - z\\
|
||||
\Leftrightarrow 0 &\stackrel{!}{=} x^3 + \underbrace{\frac{1- 2 aw}{2 a^2}}_{=: \alpha} x + \underbrace{\frac{-z}{2 a^2}}_{=: \beta}\\
|
||||
\stackrel{a \neq 0}{\Leftrightarrow} 0 &\stackrel{!}{=} x^3 + \underbrace{\frac{1- 2 aw}{2 a^2}}_{=: \alpha} x + \underbrace{\frac{-z}{2 a^2}}_{=: \beta}\\
|
||||
&= x^3 + \alpha x + \beta\label{eq:simple-cubic-equation-for-quadratic-distance}
|
||||
\end{align}
|
||||
|
||||
|
@ -166,7 +168,8 @@ I will make use of the following identities:
|
|||
\begin{align*}
|
||||
(1-i \sqrt{3})^2 &= -2 (1+i \sqrt{3})\\
|
||||
(1+i \sqrt{3})^2 &= -2 (1-i \sqrt{3})\\
|
||||
(1 \pm i \sqrt{3})^3 &= -8
|
||||
(1 \pm i \sqrt{3})^3 &= -8\\
|
||||
(a-b)^3 &= a^3-3 a^2 b+3 a b^2-b^3
|
||||
\end{align*}
|
||||
|
||||
\textbf{Case 2.1:}
|
||||
|
@ -194,8 +197,6 @@ t &:= \sqrt[3]{\sqrt{3 \cdot (4 \alpha^3 + 27 \beta^2)} -9\beta}\\
|
|||
x_1 = \frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} &\text{if } x_P \neq x_S
|
||||
\end{cases}
|
||||
\end{align*}
|
||||
|
||||
I call this function $S_2: \Set{\text{Quadratic functions}} \times \mdr^2 \rightarrow \mathcal{P}({\mdr})$.
|
||||
\clearpage
|
||||
|
||||
\section{Defined on a closed interval $[a,b] \subseteq \mdr$}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue