mirror of
https://github.com/MartinThoma/LaTeX-examples.git
synced 2025-04-26 06:48:04 +02:00
Änderungen der Zugfahrt eingearbeitet.
This commit is contained in:
parent
44b274b3a6
commit
102fe0447b
10 changed files with 129 additions and 79 deletions
|
@ -1,10 +1,8 @@
|
|||
$4 \alpha^3 + 27 \beta^2 \geq 0$:
|
||||
One solution of Equation~\ref{eq:simple-cubic-equation-for-quadratic-distance}
|
||||
is
|
||||
The first solution of $x^3 + \alpha x + \beta = 0$ is
|
||||
\[x = \frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t}\]
|
||||
|
||||
When you insert this in Equation~\ref{eq:simple-cubic-equation-for-quadratic-distance}
|
||||
you get:\footnote{Remember: $(a-b)^3 = a^3-3 a^2 b+3 a b^2-b^3$}
|
||||
Let's validate this solution:
|
||||
\allowdisplaybreaks
|
||||
\begin{align}
|
||||
0 &\stackrel{!}{=} \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right )^3 + \alpha \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right ) + \beta\\
|
||||
|
@ -12,27 +10,24 @@ you get:\footnote{Remember: $(a-b)^3 = a^3-3 a^2 b+3 a b^2-b^3$}
|
|||
- 3 (\frac{t}{\sqrt[3]{18}})^2 \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t}
|
||||
+ 3 (\frac{t}{\sqrt[3]{18}})(\frac{\sqrt[3]{\frac{2}{3}} \alpha }{t})^2
|
||||
- (\frac{\sqrt[3]{\frac{2}{3}} \alpha }{t})^3
|
||||
+ \alpha \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right ) + \beta\\
|
||||
+ \frac{t \alpha}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha^2 }{t} + \beta\\
|
||||
&= \frac{t^3}{18}
|
||||
- \frac{3t^2}{\sqrt[3]{18^2}} \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t}
|
||||
+ \frac{3t}{\sqrt[3]{18}} \frac{\sqrt[3]{\frac{4}{9}} \alpha^2 }{t^2}
|
||||
- \frac{\frac{2}{3} \alpha^3 }{t^3}
|
||||
+ \alpha \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right ) + \beta\\
|
||||
+ \frac{t \alpha }{\sqrt[3]{18}} - \frac{\sqrt[3]{2} \alpha^2 }{\sqrt[3]{3} t} + \beta\\
|
||||
&= \frac{t^3}{18}
|
||||
- \frac{\sqrt[3]{18} t \alpha}{\sqrt[3]{18^2}}
|
||||
+ \frac{\sqrt[3]{12} \alpha^2}{\sqrt[3]{18} t}
|
||||
- \frac{2 \alpha^3 }{3t^3}
|
||||
+ \alpha \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right ) + \beta\\
|
||||
+ \frac{t \alpha }{\sqrt[3]{18}} - \frac{\sqrt[3]{2} \alpha^2 }{\sqrt[3]{3} t} + \beta\\
|
||||
&= \frac{t^3}{18}
|
||||
- \frac{t \alpha}{\sqrt[3]{18}}
|
||||
\color{red}+ \frac{\sqrt[3]{2} \alpha^2}{\sqrt[3]{3} t} \color{black}
|
||||
- \frac{2 \alpha^3 }{3 t^3}
|
||||
+ \color{red}\alpha \color{black} \left (\frac{t}{\sqrt[3]{18}} \color{red}- \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \color{black}\right )
|
||||
+ \beta\\
|
||||
&= \frac{t^3}{18} \color{blue}- \frac{t \alpha}{\sqrt[3]{18}} \color{black}
|
||||
- \frac{2 \alpha^3 }{3 t^3}
|
||||
\color{blue}+ \frac{\alpha t}{\sqrt[3]{18}} \color{black}
|
||||
+ \beta\\
|
||||
\color{blue} - \frac{t \alpha}{\sqrt[3]{18}}
|
||||
\color{red} + \frac{\sqrt[3]{2} \alpha^2}{\sqrt[3]{3} t}
|
||||
\color{black}- \frac{2 \alpha^3 }{3 t^3}
|
||||
\color{blue} + \frac{t \alpha }{\sqrt[3]{18}}
|
||||
\color{red} - \frac{\sqrt[3]{2} \alpha^2 }{\sqrt[3]{3} t}
|
||||
\color{black}+ \beta\\
|
||||
&= \frac{t^3}{18} - \frac{2 \alpha^3 }{3 t^3} + \beta\\
|
||||
&= \frac{t^6 - 12 \alpha^3 + \beta 18 t^3}{18t^3}
|
||||
\end{align}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue